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Modeling Wildlife—~Habitat Relationships

Models are not like religion. You can have more than one . . . and you don’t have to be-

lieve them.

In this chapter we explore the basis and use of
models of wildlife-habitat relationships. First,
we discuss the use, types, and objectives for mod-
eling wildlife-habitat relationships. Then, we
discuss how scientific uncertainty affects wildlife
modeling and management, and how models
should be used in light of uncertainties. We then
review general types of model structures; tradi-
tional and new model forms used in research and
management of wildlife-habitat relationships;
and how models can be used in habitat planning
and conservation. We end with a discussion of
model validation.

Use and Types of Models

In this section we define models and discuss ob-
jectives for modeling types of predictions, model
selection, and accounting for correlation and
causation.

What Is a Model?

In its broadest sense, a model—from the Latin
modus, meaning mode or measure—is any for-
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mal representation of some part of the real
world. Hall and Day (1977) suggested that a
model can be conceptual, diagrammatic, mathe-
matical, or computational. These forms can also
be viewed as stages in a logical model-building
process.

Developing a conceptual model may entail
synthesizing current scientific understanding,
field observations, and professional judgment of
a particular species or habitat, and proposing
a few hypotheses to explain the species’ distribu-
tion and abundance. Even (especially) at the
conceptual stage, it is vital to explicitly state
assumptions and simplifications necessary for
the model to be true or useful. The diagrammatic
stage takes a conceptual model one step further
by explicitly showing interrelationships among
various environmental parameters and species’
behaviors. The mathematical stage quantifies
these relationships by applying coefficients of
change and formulae of correlation or causal-
ity. Finally, the computational stage aids in ex-
ploring or solving the mathematical relation-
ships by analyzing the behavior of formulae on
computers.
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The conceptual and diagrammatic stages of
modeling are often the most difficult, and the
most revealing, stages of building ecological the-
ories and enhancing understanding. They must
derive from a well-shaped statement of model-
ing goals and objectives and from basic under-
standing and articulation of the system being
represented.

Objectives for Modeling

The main objectives for developing models of
wildlife-habitat relationships are (1) to formal-
ize or describe our current understanding about
a species or an ecological system; (2) to under-
stand which environmental factors affect dis-
tribution and abundance of a species; (3) to pre-
dict future distribution and abundance of a
species; (4) to identify weaknesses in and im-
prove our understanding; and (5) to generate
testable hypotheses about the species or system of
interest.

Not all of these goals are mutually reachable.
For example, many observational field studies
may result in statistical descriptions of wildlife-
habitat relationships. Such observational de-
scriptions are pertinent to specific locations, en-
vironmental conditions, and time periods, and
help to explain observed patterns. They should
not be assumed to necessarily also provide much
power to predict conditions beyond those con-
texts with any reliability, but such studies are of-
ten used this way. At best, they can be used to
generate hypotheses. Typically, though, most in-
terest in modeling wildlife—habitat relationships
does deal with prediction. In this book, pre-
dictive modeling refers to estimating the historic,
future, or potential presence, distribution, or
abundance of a wildlife species or group of spe-
cies, given information on actual or possible en-
vironmental and habitat conditions. We include
historic conditions under prediction because
retrospective studies are so important.

Types of Predictions

There are two main types of predictions that
may be made from models. One is hindcasting,
which identifies key environmental variables,
typically those of vegetation structure or envi-
ronmental attributes, that account for observed
variation in species variables such as abundance.
Hindcasting is used to explain historic patterns
observed in species occurrence and abundance
and is pertinent, strictly speaking, only to the
time and place at which the original data were
gathered. Hindcasting is typically done from ret-
rospective studies that try to tease out main cor-
relations or causes from conditions or changes
that have already occurred. Retrospective studies
are vitally helpful in many fields—for example,
as used by Louda et al. (2003) to reduce risks in
biocontrol programs. Retrospective approaches
have also been used to reconstruct historic vege-
tation (Schulte and Mladenoff 2001), to study
the effects of habitat fragmentation on birds
(Manolis et al. 2001), and in many other areas.
The other class of prediction is forecasting.
Forecasting is an explicit attempt to predict fu-
ture or potential species conditions, given envi-
ronmental conditions at a time or place not rep-
resented by the field data used to generate the
model in the first place. Many workers use re-
sults of hindcasting, such as obtained with use of
correlation, regression, or multivariate statistics,
to predict future species conditions, typically
under alternative habitat management scenarios
(e.g., McCune et al. 2003). However, without
proper description of the initial investigation
and without validation studies, predictions from
hindcasting may be quite unreliable because en-
vironmental, demographic, and ecological con-
ditions may vary significantly among locations
or over time. At best, using hindcasting models
for prediction in new situations entails the as-
sumption that factors not accounted for in
the prediction model are insignificant or are
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unchanged. This assumption should be explic-
itly stated.

What is the best means of predicting species
responses to environmental conditions? Proper
forecasting techniques account for autocorrela-
tion of a variable over some time series or over
spatial (such as environmental) gradients (Lich-
stein et al. 2002, Diniz-Filho and Telles 2002).
More fundamentally, forecasting should be
based on an understanding of the causes of the
distribution and abundance of a species, rather
than simply correlations as with hindcasting.

Types of predictions can be deterministic, as
with point estimates of some future or expected
population density; statistical, as with estimates
of central tendency values and some measure of
variation of a parameter, such as a mean popula-
tion density plus or minus some standard devia-
tion or tolerance interval; or purely probabilistic,
as with estimates of the likelihoods of popula-
tion persistence to future time periods.

Selecting Models

The manager should be wary of models that
produce purely deterministic predictions be-
cause there is no measure of uncertainty of the
prediction or variation around the outcome.
Without knowledge of uncertainty and varia-
tion, the manager has no way to judge the rela-
tive risk associated with alternative courses of
action. As we will suggest below, one of the best
uses of wildlife-habitat relationships models is
to aid risk analysis in decision making.

If the purpose of modeling is to assist man-
agement, one might consider a multiscale ap-
proach to model development and selection. A
first step might be to clearly identify the man-
agement scales (see Table 8.1) in terms of geo-
graphic extent, map scale, spatial resolution,
time period, administrative hierarchy, and levels
of biological organization for which the man-
agement activity or plan is directed. Next, one
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might identify the key areas of scientific inquiry
(fig. 8.1) and management issues (fig. 8.2) that
pertain to a particular management activity or
plan, along with the expected duration of the ac-
tivity or plan and the need for assessing prehis-
toric or historic conditions and cumulative ef-
fects. Finally, one might consider models by their
purpose and function and select the kinds of
models most pertinent to the questions, issues,
and scales. Of course, other factors will guide
model selection as well, such as availability and
the need to integrate with other management ac-
tivities or plans.

Of Correlates and Causes

When we build a model, including a statistical
evaluation (hindcast) based on empirical obser-
vations, it is not always evident which factors are
correlates and which are true causes. This is an
old problem (Wright 1921). Often it is impor-
tant to identify true causes in order to know
which management activities to change or reaf-
firm to better meet objectives. But, frequently,
teasing apart the “causal web” of wildlife—habitat
relationships with any degree of predictive con-
fidence is immensely difficult.

Consider four progressively more complex
situations, as depicted in figure 10.1. In the first
instance (fig. 10.1A), some species response, S,
such as population presence or abundance, is as-
sumed to be directly caused and explained by
some environmental variable, E. There may also
be some degree of unexplained variation in spe-
cies response (shown as ?in the figure). The un-
explained variation (?) is due to measurement
error, experimental error, or the effect of other
environmental factors not included in the study.
It can be quantified by such means as calculating
residuals in a regression analysis or partitioning
error terms in an analysis of variance.

However, as depicted in figure 10.1B, in the
real world we may be measuring one environ-
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Causes and correlates: four increasingly complex and realistic scenarios of wildlife—habitat

relationships. S = wildlife species response; E = environmental factors; ? = unexplained variation; solid arrows =
causal relations; dashed-line arrows = correlational relations that may or may not be causal; large dots = a
sequence of other E and S variables. See text for explanation. (From Marcot 1998, 137.)

mental variable, E1, when the real causal factor is
another, unmeasured environmental variable,
E2. In this case, the two environmental variables
are themselves correlated and there may or may
not be a causal relation between them. E1 and E2
may be vastly different kinds of environmental
factors and may operate at different spatial or
temporal scales as well. We think we have ex-
plained the biological response of the species S
by the observed correlation with E1, and we may
even be able to predict S from E1 to a limited de-
gree (in which case E1 is termed the “latent vari-
able”), but we may be greatly mistaken to pre-
sume that management of E1 will necessarily
affect the species as we wish. Further, the unex-
plained variation (?) in S is then due to the less
than perfect correlation between El and E2 as
well as to measurement and experimental error,

and to influential environmental factors beyond
El and E2 not addressed in the study. Such a sit-
uation may be analyzed using univariate multi-
ple regression techniques.

As an example, we may find that mean fecun-
dity rates (S) in a population of Townsend’s vole
(Microtus townsendii) are negatively correlated
with food abundance during the previous season
(E1), and thereby infer that high food abun-
dance leads to high population density, which
in turn suppresses mean fecundity levels as a
population regulation mechanism. However, on
closer inspection, it may turn out that the real
culprit, E2, causing lower mean fecundity of
voles is parasitism by botflies (Cuterebra grisea)
(e.g., Boonstra et al. 1980). It may turn out that
both food resources and botfly incidence are af-
fected by weather, so that environmental factors
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FE1 and E2 are correlated, but there is no direct
causal link between them. If our study focused
only on food resources and vole fecundity, we
would conclude that food abundance is the
cause and that managing for higher vole densi-
ties could be afforded by managing for more
consistent food resource levels. This conclusion
would be in error. Also, the unexplained varia-
tion in vole fecundity would be caused by the
less than perfect correlation between food re-
sources and botfly incidence, as well as by addi-
tional factors beyond food or botflies not ad-
dressed in the study.

However, the real world is often even more
complicated. As shown in figure 10.1c, another
species, S2—potentially a competitor, predator,
or symbiont—may also play a role in affecting
the species of interest, S1. (We included the para-
site as an environmental factor in the last exam-
ple.) Following our example above, mean vole
fecundity might be influenced by some (hypo-
thetical) predator, S2, that selectively removes
high-fecundity individuals from the vole popula-
tion. S2 itself may share some environmental fac-
tor, E1, that correlates with (but does not cause)
S1.Inan even more complicated but increasingly
realistic schematic, as in figure10.1d, S2 may also
be influenced by other environmental factors be-
yond E1. And so the causal web expands.

It is important to recognize such causal webs
of organisms and environmental factors, and to
focus attention on the main influences (instead
of the entire possible causal web). We should at
least challenge ourselves to draw a causal dia-
gram (the diagrammatic phase of modeling
as outlined above)—often called an influence
diagram—so that we can hypothesize which are
major causal factors, which are minor causal fac-
tors, and which are merely correlative. Differen-
tiating between causes and correlates is critical
for guiding costly habitat management activities
to respond to complex environmental issues
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such as changes in air quality or regional climate,
and for establishing an appropriate monitoring
scheme, including identifying and tracking key
indicators.

Path regression analysis is a statistical tech-
nique that can aid in quantifying the relative
contribution of causal factors (Shipley 2002).
Path regression is used to determine and display
the partial correlation coefficients of individual
factors that can influence a species population
or, in some instances, a management objective,
such as used by Howe and Brown (2000) to
model effects of rodent foraging on vegetation
communities, and by Johnson et al. (2001) to
model foraging behavior of woodland caribou
(Rangifer tarandus caribou). An example of a
path regression analysis is shown in figure 10.2.
Other techniques useful for teasing out the re-
lative contributions of environmental factors,
species factors, and uncertainty are those of
multivariate multiple regression and two-stage
regression.

Uncertainty and Unknowns in Wildlife—Habitat
Relationship Models

Biological models do not predict species distri-
bution and abundance without error. Rather,
modeling wildlife-habitat relationships, like
managing species habitats, typically entails deal-
ing with the following kinds of obstacles:

+ Imprecise data

+ Uncertain inferences

+ Limiting and fallacious assumptions

« Unforeseen environmental, administra-
tive, and social circumstances

 Risks of failure

Imperfections are often present in habitat analy-
ses and management decisions but are especially
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0.160" U=0.76
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Management involvement ——————— Satisfaction with QDM
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Figure 10.2. Example of a path analysis that partitions the various factors accounting for variation in public
satisfaction with quality deer management (QDM). The values are partial correlations (i.e., the correlation of
each factor once the contribution of all other factors is accounted for). U = unexplained variance, calculated as
(1-RH)Y%* P=<0.05,** P=<0.0001. (Reproduced from Woods et al. 1996 [fig. 1], by permission of the

Wildlife Society.)

important when there is risk of reducing a wild-
life population or eliminating a species. Uncer-
tainty may be encountered when analyzing bio-
logical data, when making inferences about
species’ responses to environmental conditions,
and when selecting and instituting a manage-
ment plan.

Types of uncertainty may be classified as sci-
entific uncertainty and decision-making uncer-
tainty. Just as analyzing species and habitats en-
tails a different process from that used to make
decisions on resource management, so too are
the kinds and implications of uncertainties from
the analysis process distinct from those in a
decision-making process. Results of a technical
study, such as a risk analysis of population via-
bility, may be part (but only part) of the infor-

mation used by a decision maker in developing a
habitat management plan.

Types of Uncertainty

Scientific uncertainty in habitat modeling refers
to the nature of the data and the ways in which
information on species and habitats is repre-
sented and applied. Scientific uncertainty essen-
tially means that our predictions of how species
respond to environmental conditions are not
perfect. Uncertainty may occur because (1) the
system itself is naturally variable and very com-
plex, and thus difficult to predict; (2) the process
of estimating values of parameters in the habitat
model entails a degree of error; (3) models used
to generate predictions are in some sense invalid;
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or (4) the scientific question being asked is am-
biguous or incorrect.

VARIABILITY OF NATURAL SYSTEMS—
NOISE IN THE MESSAGE

Many aspects of natural systems vary over time.
Predicting attributes of the system—the “mes-
sage” we are trying to interpret—may often in-
volve observing and modeling traits that are in-
fluenced from outside factors (fig. 10.1); that is,
“noise” inherent in the message. Such noise in-
troduces variation in measurements and uncer-
tainty in estimating and predicting attributes of
the system. In statistical models of habitat rela-
tionships, noise is typically depicted as unex-
plained variation in the occurrence or abun-
dance of a species. One kind of unexplained
statistical variation is the value of “residuals” in
regression models. Sometimes this kind of noise
in the system can be a useful source of informa-
tion itself (e.g., Motta 2003).

In a most revealing review of models in ecol-
ogy and evolution, Moller and Jennions (2002)
determined that the mean amount of variance
() explained was a dismal 2.51 to 5.42%, and
that the mean effect size reported was between
Pearson r = 0.180 and 0.193. They concluded
that, because of so much noise in the data, most
studies had inadequate sample sizes to determine
the absence of a particular relationship with a
power of 80% and o = 0.05. This conclusion is
not encouraging and suggests the need to con-
duct initial pilot studies to estimate the degree of
variation in parameters so sample sizes can be
adjusted accordingly (see chapter 4). However,
Peek et al. (2003) viewed this same study from the
perspective that about halfof the variation in sta-
tistical models is not explained (the unexplained
residual or random error), suggesting a far higher
success rate in ecological modeling. They con-
cluded that the success of ecological models
should be judged not by single-factor relation-
ships, but by overall model performance. Still, in
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a risk management framework, and to set realis-
tic expectations for results of their actions, deci-
sion makers should know that such models may
explain or predict only half the variation in what-
ever conditions they wish to manage.

De Valpine and Hastings (2002) suggested a
numerical method for incorporating noise and
observation error when fitting population mod-
els, and their tests of fit suggested that such an
approach works best with stable-point Ricker
recruitment models and worst with Beverton-
Holt models. Hewitt et al. (2001) suggested treat-
ing temporal variability as a parameter instead of
as noise, thereby increasing the detection of
treatment effects in before—after/control-impact
(BACI) studies.

UNCERTAINTY OF EMPIRICAL
INFORMATION—ERRORS OF ESTIMATION

Values of environmental parameters are typi-
cally estimated from a sample set of observa-
tions. A parameter, for example, may be the
mean number of tree stems per hectare or the
variance of litter sizes of black-footed ferrets
(Mustela nigripes) to the extent that these can be
attributed to individual and environmental vari-
ation. When a parameter is estimated from a
sample set of observations, from a statistical
viewpoint, uncertainty or errors in estimation
occur. The estimations are biased if each of the
values of the observations are consistently lesser
or greater than actual (unknown) values; inaccu-
rateif the estimated value of the parameter of in-
terest (such as a mean or a variance) is substan-
tially different from the true value; or imprecise if
values of individual observations vary widely
among each other.

Each of these errors in estimating the value of
a parameter constitutes a different kind of scien-
tific or statistical uncertainty. Bias is estimated
by the difference between the mean of observed
values and the true parameter value; accuracy is
measured by mean square error of observed val-
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ues; and precision is estimated by variance in the
observed values. Statistical estimators always
have these properties of bias, accuracy, and pre-
cision, as well as others, particularly consistency.
Bias tells you how far you missed the bull’s-eye
on average; accuracy tells you the spread of
misses among individual trials; and precision
tells you how tightly grouped your trials are,
whether they missed the bull’s-eye or not. Then,
consistency tells you if you're even shooting at the
right target. An estimator can be consistent, but
biased, and adjusting the sampling methodology
can reduce bias; likewise, an estimator can be
consistent, but imprecise or inaccurate, and in-
creasing sample size can increase precision and
accuracy.

Such errors of estimation can arise from a
number of sampling problems, including inade-
quate sample size, observations taken from dis-
parate times or places, and samples taken non-
randomly or nonsystematically, depending on
the assumptions of the estimator being used. Er-
rors of estimating the value of parameters may
also arise from applying the wrong kind of esti-
mator, such as in applying a formula for cal-
culating variance. If correct use of the formula
assumes that observations were made indepen-
dently and randomly—when they were actually
made over a time series or systematically, such as
at even intervals over a transect—then an error
of applying the wrong kind of estimator has
been made. (With systematic samples, the ap-
propriate variance estimator should instead use
the mean square of successive differences in val-
ues measured along the time or spatial series of
samples.)

MODEL VALIDITY AND UNCERTAINTY OF
MODEL STRUCTURE

Model validity refers to a broad spectrum of per-
formance standards and criteria. Examples are
model credibility, realism, generality, precision,
breadth, and depth (Marcot et al. 1983). The var-

ious criteria refer to such attributes of models as
the number of parameters in a model and their
interactions, the context within which a model
was developed or should be used, and the under-
lying and simplifying assumptions of the model
structure (see table 10.1 for definitions of model
validation criteria).

A parameter that is estimated precisely, accu-
rately, and without bias may still be used inap-
propriately, as in a model that is applied to the
wrong environment, location, season, or species.

APPROPRIATENESS OF THE PROBLEM—
ASKING THE RIGHT QUESTION

The context in which a theory is applied or a
model is used may introduce yet another source
of uncertainty. Even given that a model has been
validated—that is, shown to be a useful tool and
to generate acceptable predictions according to
particular criteria—it still may be applied to the
wrong problem. (This conclusion is analogous
to the property of consistency in statistical esti-
mation.) In some cases, this problem of inap-
propriate application may be unavoidable if no
other models are available.

For example, a life table model that assumes
equal sex ratios and that adults breed each year
may generate acceptable predictions for use with
Dall sheep (Ovis dalli) but may generate grossly
inaccurate predictions when used for species
with variable or quite different social breeding
organizations, such as pronghorn (Antilocapra
americana). This application would call into
question the reliability of the model when used
with some species or under some circumstances.

Further, the hypothesis or problem being ad-
dressed by using a particular model may be am-
biguous or even unanswerable. For example, a
model of species—habitat relationships that de-
scribes vegetation types may not provide a par-
ticularly useful foundation for answering ques-
tions about landscape dynamics necessary for
maintaining viable populations of the species.
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Table 10.1.  Criteria useful for validating wildlife-habitat relationship models
Criterion Explanation
Precision The capability of the model to replicate particular system parameters
Generality The capability of the model to represent a broad range of similar systems
Realism The capability of the model for relevant variables and relations
Precision The number of significant figures in a prediction or simulation
Accuracy The degree to which a simulation reflects reality
Robustness Conclusions that are not particularly sensitive to model structure
Validity The capability of the model to produce all empirically correct models.
Usefulness The existence of some empirically correct model.
Reliability The fraction of models that are empirically correct
Adequacy The fraction of pertinent empirical observations that can be simulated
Resolution The number of parameters of a system that the model attempts to mimic
Wholeness The number of biological processes and interactions reflected in the model
Heurism The degree to which the model usefully furthers empirical and theoretical investigations
Adaptability The future development and application
Availability The existence of other, simpler, validated models that perform the same function
The degree to which model results match our intuition and stimulating thought, and
Appeal practicable.
Breadth, Depth The number and kinds of variables chosen to describe each (habitat) component
Face validity The credibility of the model
The match of model variables and parameters with real-world counterparts, and their
variation causing outputs that match historical data; also, the dependence of model
Sensitivity output on specific variations of variables
Hypothesis validity The realism with which subsystem models interact

The identification and importance of all divergence in model assumptions from reality,

Technical and operational validity
Dynamic validity

as well as the identification and importance of the validity of the data
The analysis of provisions for application to be modified in light of new circumstances

Source: Based on Marcot et al. 1983; reproduced by permission of the Wildlife Management Institute.

Accounting for Error in Modeling

One of the major problems in using models of
wildlife-habitat relationships is that of propaga-
tion of error. Error can arise from model struc-
ture, missing data, mismatched scales of geo-
graphic extent and spatial resolution, and other
systematic sources, as well as from measurement
error and the stochastic nature of biological sys-
tems. How do all such errors compound in a par-
ticular model? The problem of error propagation
has been poorly addressed in the statistical and
modeling literature and needs much work. One
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approach to depicting the compounding of error
is to partition the variance associated with model
output into additive factors, each representing
the major sources of error. This method is analo-
gous to methods used in analysis of variance, in
which mean square errors are partitioned into
sampling error and experimental error. This ap-
proach may entail an analytic formulation for
summing variance and covariance terms (box
10.1). Other approaches may invite use of model
sensitivity analysis. We also further discuss errors
in modeling below under “Validating Wildlife—
Habitat Relationship Models.”



Box 10.1 Propagation of error in modeling wildlife—habitat relationships

How does error compound in wildlife-habitat models, and why should we worry about it?

Every variable and function in a wildlife-habitat model can have several kinds of associated error, including measure-
ment error, experimental error, and random error. Although it may be feasible to estimate such error for each variable or
simple relation in a univariate sense, it is the compounding of error among variables and in complex functions that combine
variables that may seriously affect final model output. The result of such error propagation may be model output that is sig-
nificantly biased, imprecise, or inaccurate. Thus it may be critical to understand how error terms compound.

The biostatistical literature continues to poorly address or even to ignore the estimation of error propagation, in large
part because it is such a wicked analytic problem. The classic approach to the problem is to dissect the variance of some vari-
able y into its Taylor series expansion terms of component measured quantities F(x;, xp, x3,. . .) (Kotz et al. 1982):

var) = ) (3—5)2var(x,.) 23 <Z—i> <§—f) cov(xx).

i

The wicked part of this problem is not in estimating the first variance term, but in the covariance terms cov(x;x;). In the sim-
plest case, if x; and x; are uncorrelated, then cov(x;x;) = 0, and the entire second term for var(y) drops out. Ecological vari-
ables are quite often at least partially correlated (figs. 10.1, 10.2), so that cov(x;x;) > 0 and the second term in the above equa-
tion is nonzero and needs to be calculated.

In the case of estimating covariance among means, the parent covariance term cov(x;x;), or Gfu, , can be calculated as
(Eadie 1983):

1

Olzlu:},ijfl X, E [(Hi - l_l)(Ui - 1_))1

This covariance term may be extremely difficult to impossible to measure from empirical data. This difficulty is especially
true with real-world studies of landscapes, ecosystems, and populations in conditions that are poorly, or not, replicable, and
for which control conditions are not feasible.

However, it is the covariance between ecological variables that may often be a major source of variation and error in
model output. Even in the simple case of two interacting variables, x and y, the appropriate variance estimator involves the
wicked covariance term: for the interaction term xy, variance is calculated as y* var(x) + x* var(y) + 2xy cov(x,) (Kotz et al.
1982, 549). Empirically, covariance among all such key variables in a wildlife—habitat model may be impossible to estimate
empirically and to calculate analytically.

Propagation of error also means that initial errors may have a fatal effect on the final results—that is, that small changes
in initial data may produce large changes in final results. Such problems are called ill-conditioned and may include popula-
tion models that exhibit chaotic or initially unpredictable behavior (Morris 1990; Hassell et al. 1991). Additional sources of
error, particularly in computer models and that can propagate across functions, include rounding errors and truncation
errors.

What is a modeler to do? One tractable approach to evaluating error propagation is to conduct sensitivity analyses of the
model, whereby changes in outputs are plotted as a function of incremental changes in input variables (Nelson 2003). This
approach can help identify the domains over which models exhibit chaotic behavior, such as when populations exhibit ir-
regular cycles or suddenly crash or expand with only minor changes in the input variables. Sensitivity analysis can be one
phase of model validation, discussed further in the text. Another analytic approach to dissecting propagated errors is for-
ward and backward analysis (see Froberg 1969, 3-9).
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Decision Making under Uncertainty and What
to Do about It

Probably all management decisions dealing with
wildlife habitat are made under some uncer-
tainty of current conditions or future effects.
Decision-making uncertainty can arise from im-
precise data, uncertain inferences, limiting and
fallacious assumptions, and unforeseen environ-
mental, administrative, and social circum-
stances. Each of these factors can contribute to
risks of failure in meeting desired management
goals.

How might the manager or decision maker
proceed under such uncertainties? A host of
decision-analysis techniques are available that
aid in assessing the value of perfect information,
the value of sample information, the credibility
of information, and quantitative measures of the
state of knowledge (e.g., Clemen and Reilly
2001; McDonald and McDonald 2003; Pielke
and Conant 2003). We review some decision-
aiding approaches and models below. Using
these approaches to identify areas and degrees of
decision-making uncertainty may also be useful
for establishing management activities as adap-
tive management experiments. In a sense, uncer-
tainty is an opportunity for testing management
hypotheses about outcomes of actions, as long as
basic tenets of adaptive management are not vi-
olated (see chapter 11).

Balancing Theory with Empiricism

We have dedicated several chapters in this book
to reviewing study design and measures of habi-
tat and wildlife behavior. Empirical field stud-
ies—whether observational descriptions or ex-
perimental tests—can be used to develop models
of wildlife-habitat relationships. Theory, how-
ever, often plays an important role in model de-
velopment. Theoretical models may tend to be
more robust and general, whereas empirical
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models may be more locally accurate and precise.
Each complements the other. Ultimately, empiri-
cal models can be used to induce more general
theoretical ones, and theoretical models can help
guide the specific development of empirical
models.

Using Models to Generate
Research Hypotheses

The modeling process should be a means by
which we challenge ourselves to explicitly articu-
late what we think we know about some system.
This challenge occurs in the conceptual and dia-
grammatic phases of model development as dis-
cussed previously. To this end, model output can
be used to generate research hypotheses. In an
adaptive management context, management ac-
tivities can be crafted to test the more important
assumptions or provide information on the key
unknowns. When management activities are ap-
plied on the ground, these assumptions and un-
knowns may be termed management hypotheses.

To scientifically test management hypotheses,
management activities should be crafted to fol-
low the guidelines for correct study design, in-
cluding evaluation of baseline conditions, provi-
sion of controls, adequate study and treatment
duration, appropriate spatial scale, and adequate
replication of controls and treatments. Such con-
siderations pertain to ensuring consistency, re-
ducing bias, and providing for appropriate levels
of accuracy and precision of estimates. Then, ef-
fects of the management activities can be ana-
lyzed to validate the original assumptions and
provide new information to revise or reaffirm the
management hypotheses and guidelines. In turn,
the models used to suggest the original manage-
ment activities would be updated and new activi-
ties suggested, if warranted by the findings. Thus
the ideal adaptive management process is cyclic,
not linear, and entails strict adherence to correct
experimental design. That is, management trials
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on the ground are crafted as scientific experi-
ments, and their results are used to pose new
management hypotheses and to further craft and
test new management trials.

As models become more complex, and as
management objectives broaden to include land-
scapes and ecosystems, use of models for gener-
ating research hypotheses should become more
salient in the decision-making process. Real-
world constraints of uncertain future research
budgets, changing management goals, and bal-
ancing the need for short-term publications and
long-term studies must be addressed in this use
of models.

Types of Model Structures

The array of models in wildlife ecology and con-
servation is bewildering. There has been an ex-
ponential increase in the number of publications
on modeling in the ecological and wildlife litera-
ture since the middle of the last century (fig.
10.3), with no asymptote in sight. Clearly, mod-

eling continues to play central roles in many
facets of wildlife-habitat relationships (WHR)
research and management.

In this section we briefly review some general
types of WHR model structures as a way to pro-
vide a classification of types of models. In the
next section we discuss specific models that are
directly or potentially useful to WHR research
and management.

Statistical Empirical Models

Statistical empirical models provide statistical
analyses or summaries of empirical data. These
models are usually based on statistical correla-
tions among variables. They include many kinds
of bivariate and multivariate analyses that de-
scribe relations among variables (see chapter 6).
Recently, meta-analysis methods have come into
vogue that provide a means of combining infor-
mation, and making inference across, multiple
studies (Pena 1997; Gurevitch et al. 2001). Meta-
analysis has been used in a variety of research
questions, including understanding the effects of
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competition on predator—prey interactions
(Bolnick and Preisser 2005), determining the in-
fluence of organic agriculture on biodiversity
(Bengtsson et al. 2005), and estimating vital rates
of raptors (Boyce et al. 2005).

Statistical empirical models also include sta-
tistical approaches that derive relations among
variables in a post hoc manner. Some of these
newer approaches are termed knowledge discov-
ery, data mining, and rule induction (Jeffers 1991;
Hastie et al. 2001). These approaches entail dis-
covering relations among variables in typically
large data sets or from a series of examples.
These newer approaches deviate significantly
from the traditional “frequentist” statistical
methods. Some entail use of Bayesian statistics,
and others depart entirely from statistical con-
siderations of hypothesis-driven analyses alto-
gether. Some classical, frequentist statisticians
despair of such post hoc approaches as “fishing
expeditions” that may yield spurious results with
unknown degrees of confidence (Anderson et al.
2001). However, the methods seem to be here to
stay, and when used judiciously and thought-
fully, they can be very helpful in further hypoth-
esis creation. We discuss some tools under these
new approaches below.

Habitat Relationship Models

A variety of traditional WHR models have been
used for many years. These include wildlife-
habitat matrix models, gap analysis models,
habitat suitability index (HSI) models, habitat
effectiveness (HE) models, habitat evaluation
procedures (HEP), and others. The basis for
these models can be a combination of expert
opinion, literature, and field data. These models
may be structured as simple look-up tables
(WHR matrix models), as geometric mean
equations incorporating key or limiting factors
(HSI, HE models), or as hybrids of equation-
based analysis within additional assessment pro-
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cedures (HEP models). They may also predict
wildlife species presence and distribution based
on vegetation and land cover conditions (WHR
matrix models, gap analysis models).

Analytic and Numerical Population Models

Analytic and numerical population models in-
clude more traditional population demographic
and genetic models, such as Leslie matrix life ta-
bles (e.g., Henny et al. 1970; Taylor and Carley
1988; Miller et al. 2002) and calculations of rates
of inbreeding and genetic drift (e.g., Perrin and
Mazalov 1999; Edmands and Timmerman 2003).

Simulation Models

Simulation models include traditional dynamic
models that simulate time-based interactions of
variables of populations and ecosystems. Most
simulation models are discrete and based on dif-
ference equations or other representations of
time-step functions, and as such derive largely
from “queueing theory” (Gordon 1978). A queue
is a sequence of events waiting to happen (for
example, dispersal of an organism from a par-
ticular habitat patch); how they happen is de-
termined by the structure of the model (such
as equations that describe the direction and
distance of dispersal), and when they happen
is usually based on a probability distribution
of event frequency (such as the probability of
dispersal events per time increment). Time-
dynamic simulation models are used widely in
ecology (e.g., Bolliger et al. 2005).

Geographic Information
System—Based Models

Simulation models also include, more recently,
geographic information system (GIS)-based,
geographically referenced (“spatially explicit”)
models of landscape patterns and disturbance
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events (see chapter 8) and simulations of indi-
vidual-based movement throughout a landscape
and use of habitat patches (see chapter 9). GIS
models can be very flexible and incorporate
other modeling constructs, such as population
viability analysis. For example, Zhu et al. (1998)
integrated GIS with a decision support structure
using a knowledge-based information system,
and illustrated its utility for strategic planning
for development of the island of Islay off Scot-
land. Reynolds et al. (2000) used the Ecosystem
Management Development System (EMDS)
model (Reynolds et al. 1997), which integrates
a fuzzy logic modeling framework within a
GIS system, to evaluate watershed conditions.
Raphael et al. (2001), Wisdom et al. (2002), and
Rowland et al. (2003) integrated Bayesian belief
networks with GIS to evaluate broad-scale man-
agement effects on terrestrial wildlife in the inte-
rior western United States. Zhang et al. (1997)
integrated a neural network model (see below)
into GIS to classify vegetation types from remote
sensing imagery. Many other examples of GIS
modeling, including hybrid models of GIS with
other modeling constructs, are available (O’Neil
et al. 2005).

Knowledge-Based (Expert) Models

Knowledge-based (expert) models represent the
experience and judgment of human experts
rather than being based strictly on empirical
data, simulations, or theoretical constructs.
These models include expert systems of various
types, as well as models in which the state vari-
ables and relations are determined by expert
judgment. Knowledge-based models are often
devised by use of an intermediary “knowledge
engineer” or someone who quizzes the expert
and puts the gained expertise into formulae,
functions, and computer code. Such expert-
based models can pose particular challenges for
verification and validation.

A Review of Specific Types of
Wildlife—Habitat Models

In this section we will review specific examples
of various types of models that are useful for as-
sessing wildlife—habitat relationships. We split
our review here into traditional WHR models
and a set of newer, more avant-garde types of
models.

Traditional Models of Wildlife—Habitat
Relationships

In this section we review types of wildlife-
habitat relationship models that have been com-
monly used in many studies of management
situations.

MODELS OF VEGETATION COMPOSITION
AND STRUCTURE

A number of models have been developed that
display current and future composition and
structure of vegetation stands. These models in-
clude forest stand growth and yield models of
many kinds, which are typically based on growth
and yield information generally available for a
variety of commercial forest types.

It is common practice to use forest growth
models designed for silviculture to infer amount
of wildlife habitat (e.g., Thompson et al. 2003).
However, this use assumes that the vegetation
variables output by the model are directly perti-
nent to wildlife—that is, that they are the vegeta-
tion conditions selected by specific wildlife spe-
cies (see fig. 10.1). In many cases, however, the
representation of habitat for specific wildlife
species may be uncertain, at best. Thus the user
should interpret actual wildlife response with a
fair degree of caution and skepticism. In other
words, a portion of the uncertainty (variation)
in species’ response may be due to simply not
tracking the most appropriate habitat variables.
This uncertainty also means that if successful
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wildlife management is dependent on models
built for other purposes, the models should be
evaluated for how precisely and fully they repre-
sent key habitat attributes for specific species of
interest.

Models of ecological succession are useful for
predicting changes in vegetation composition
and structure over time. Such models are used in
conjunction with WHR matrix models to depict
changes in macrohabitat for wildlife species. As a
systems model, a model of successional changes
can also incorporate the ecological functions of
wildlife as influencing vegetation. For example,
the models of Lesica and Cooper (1999) of shrub
vegetation succession in the Centennial Sandhills
of southwest Montana incorporated the salient
effects of pocket gopher (Thomomys talpoides)
burrowing and ungulate browsing, as well as fire,
on maintaining early seral vegetation.

DISTURBANCE MODELS

Disturbance models can include a variety of
process, simulation, or even analytic models to
determine how environmental conditions, espe-
cially vegetation and river systems, are affected
by intermittent disturbance events such as fire,
radical climate change, drought, and floods. Dis-
turbances are being considered more frequently
in models used to assess wildlife-habitat rela-
tionships and other kinds of land use (Schelhaas
et al. 2002). Some disturbance models pertain to
fine-grain features of environments, such as
simulating forest canopy gaps (Lundquist and
Beatty 2002). Other disturbance models address
broad geographic areas, such as the effects of
fires on the amount and distribution of old-
growth forests across a broad area—for example,
the Pacific Northwest of the United States
(Wimberly 2002).

Disturbance models can be immensely useful
for conservation of rare species or recovery of
threatened species, by understanding the roles—
negative and positive—played by disturbance
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events. For example, Root (1998) determined
that the long-term viability of the threatened
Florida scrub jay (Aphelocoma coerulescens) re-
quires fires at least every 30 years—fires serving
to maintain a diversity of habitat patches used by
the species. Probst and Weinrich (1993) found a
similar, positive relation between the endan-
gered Kirtland’s warbler (Dendroica kirtlandii)
and frequent fires in its jack pine (Pinus bank-
siana) forest habitat in Michigan.

Recently, there has been a return to modeling
disturbances by using stable-state analysis (Beis-
ner et al. 2003; Didham and Watts 2005). Popu-
lar in the 1960s, this modeling approach views
specific patterns of composition and structure of
ecosystems and ecological communities as semi-
stable conditions that can be perturbed to vary-
ing degrees by disturbance events. If the pertur-
bation is sufficiently strong, the system may
enter a new configuration and a different stable
state. Examples include repeated fires, livestock
grazing, and agricultural development in native
grasslands that allow invasive species to gain an
irreversible foothold and basically destroy native
grass and forb communities (Harrison et al.
2003); the creation of new stable states in forests
of the eastern United States under immense her-
bivory pressure from overabundant deer herds
(Stromayer and Warren 1997); grasslands main-
tained by herbivore foraging (Seabloom and
Richards 2003); and, in a case of the absence of
a natural disturbance event, the exclusion of
wildfire in sagebrush-steppe or arid savanna
communities that leads to invasion (“encroach-
ment”) by conifer trees or other woody plants
(e.g., Skarpe 1991).

The degree to which systems, including wild-
life species, can rebound following a disturbance
event is a measure of their resilience (Gunderson
et al. 2002), and the degree to which systems do
not change is their resistance (Knapp et al. 2001;
Byers and Noonburg 2003). One implication of
this rebounding for managing resource produc-
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tion, including wildlife habitat, is that more re-
silient and resistant systems are better able to
withstand the onslaught of disturbance events.
And by implication, more resilient and resistant
systems can produce more predictable and sus-
tainable levels of renewable natural resources.
Another implication of multistate modeling is
that some systems can attain several stable states,
or may take a long time to recover to original or
desired states (Ludwig et al. 1997), or, if pushed
too far, may never be able to be restored to a pre-
vious state. These outcomes can have important
implications for guiding conservation and
restoration actions, particularly if recovery times
following disturbances do not match expecta-
tions (Paine et al. 1998).

Another type of disturbance model pertains
to climate change. Much work is being done to
understand climate trends as disturbance events
themselves; the influence of climate shifts on
other disturbances, such as fire frequency (Whit-
lock et al. 2003) and pests and parasites (Jaenike
2002; Logan et al. 2003); and the implications of
these influences overall changes in ecosystems
(Beckage et al. 2005), ecological communities
(Weltzin et al. 2003), and individual wildlife taxa
(Torti and Dunn 2005). For example, analyzing
data on temperature and precipitation trends in
Europe, Lemoine and Bohning-Gaese (2003)
predicted that climate change would result in a
decrease in the proportion of long-distance mi-
gratory birds and an increase in the proportion
and number of short-distance migrants and res-
idents. They concluded, with some empirical
corroboration, that increasingly warm winters
will disproportionately threaten long-distance
migrants (also see Jonzen et al. 2002).

WHR MATRIX MODELS

WHR matrix models have been around since the
1970s—and probably far earlier in more primi-
tive forms. They are essentially static tables that
relate wildlife species to habitat types and com-

ponents (Verner and Boss 1980) and that depict
other features of their life history (Johnson and
O’Neil 2001). Often the data are categorical and
qualitative, and are derived from a combination
of field studies and (largely) professional judg-
ment. Such matrices or information bases may
be useful for predicting the potential presence of
wildlife species associated with specific environ-
mental conditions, although they tend to err on
the side of commission (predicting more species
to be present than actually are). This error is be-
cause factors not specified in a query of WHR
matrix databases are tacitly presumed to be opti-
mal or do not affect species absence. Still, such
matrices are of great value to explore general
trends and patterns of potential species presence
and community composition.

GAP ANALYSIS MODELS
Gap analysis is a method of identifying “gaps” in
conservation area networks in which high spe-
cies richness or locations of particular species or
taxa of interest are unprotected. Gap analysis
maps are typically produced in GIS by overlay-
ing land ownership and management categories
with species’ range maps or distribution maps of
vegetation and land cover categories that repre-
sent species’ habitats. Then, “hot spots” of high
species richness, centers of endemism or rarity,
or other such features of conservation interest
are delineated, and it is then determined if such
sites are unprotected (Jennings 2000).

Gap analysis has been used widely as part of
reserve design tools (also see discussion below
on other methods of reserve design). As exam-
ples, Clark and Slusher (2000) used gap analysis
to design a national wildlife refuge in the Kanka-
kee River/Grand Marsh area in Indiana and Illi-
nois. Caicco et al. (1995) used gap analysis to de-
termine the conservation and management
status of vegetation communities in Idaho. Allen
et al. (2001) used gap analysis to model via-
ble mammal populations, and suggested that
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defining minimum critical areas via gap analysis
was a useful way to produce better maps of criti-
cal unprotected areas for mammal species.

Several cautions pertain to gap analysis. Hot
spots of high species richness may represent dis-
turbed or ecotonal environments rather than
cores of species’ ranges and optimal habitat con-
ditions, so some care needs to be taken in inter-
preting results and in understanding the under-
lying distributional data. Church et al. (2000)
suggested a method to balance species richness
objectives with assessment of habitat quality.
Flather et al. (1997) suggested that several key
assumptions of gap analysis should bear critical
evaluation, including (1) that a subset of taxa
can represent overall diversity patterns, and (2)
that accurate reserve design can be affected by
data uncertainty and error propagation in the
underlying distributional data. Other concerns
for accuracy of mapping gaps and species rich-
ness hot spots were expressed by Dean et al.
(1997) and NCASI (1996), who found that
boundaries of species-rich areas vary greatly de-
pending on the accuracy of the underlying habi-
tat and species distribution maps.

HABITAT SUITABILITY AND
EFFECTIVENESS MODELS

One of the more popular and simpler ap-
proaches to modeling WHR has been the use of
habitat suitability index (HSI) models. HSI mod-
els are used extensively by USDI Fish and Wild-
life Service (Schamberger et al. 1982) and other
federal resource management agencies. These
models typically denote habitat suitability of a
species as the geometric mean of n environmen-
tal variables deemed to most affect species pres-
ence, distribution, or abundance. The general
model form is: HSI = (V, - V, - ... V,)'" where
the V’s represent n key environmental variables.
Each variable and the resulting HSI values are
scaled from 0 to 1. The overall HSI value as-
sumedly represents the final response of the spe-
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cies to the combination of the values of the envi-
ronmental parameters. A geometric mean is
used so that when one variable goes to zero, HSI
=0.

For example, the three environmental vari-
ables denoted in an HSI model for yellow war-
bler (Dendroica petechia) are percentage of de-
ciduous shrub crown cover, average height of
deciduous shrub canopy, and percentage of
shrub canopy consisting of hydrophytic shrubs
(Schroeder 1983). The resulting suitability index
in the yellow warbler model represents relative
habitat values for reproduction. HSI models
have been constructed for a wide variety of spe-
cies in the United States.

HSI models are useful for representing in a
simple and understandable form the major envi-
ronmental factors thought to most influence oc-
currence and abundance of a wildlife species.
However, HSI models are best viewed as hy-
potheses of species—habitat relationships rather
than as causal functions (Schamberger et al.
1982). Their value lies in documenting a repeat-
able assessment procedure and in providing an
index to a very few, and easily evaluated, envi-
ronmental characteristics that can be compared
among alternative management plans.

However, HSI models do not provide infor-
mation on population size, trend, or behavioral
response by individuals to shifts in resource con-
ditions, and seldom include interaction or error
terms. In fact, Bart et al. (1984) found that HSI
models performed poorly because they were
not based on field data and did not sufficiently
account for interactions between the predic-
tor (habitat) variables. Cole and Smith (1983)
voiced similar concerns. Also, as we have dis-
cussed elsewhere, users should be wary of mod-
els that provide purely deterministic predictions
with no statements of uncertainty or variability.
At best, such models should be viewed as provid-
ing potentially testable hypotheses (although the
0-1 indices of HSI models are not particularly
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interpretable as empirical parameters) and in-
terpreted as average conditions at a relatively
broad geographic extent.

Comparable to habitat suitability index mod-
els are habitat capability and habitat effective-
ness models. These models essentially perform
the same function as HSI models but may vary
slightly in structure. Habitat capability (HC)
models typically provide an estimate of the total
area within which resources for a particular spe-
cies can be found, or rank a given area for the
relative capability of supporting a species, given
a few key environmental factors. Habitat effec-
tiveness (HE) models rank resources in an area
according to the degree to which maximum use
or carrying capacity can be met.

An HE model was constructed for assessing
habitat effectiveness for Rocky Mountain elk
(Cervus elaphus nelsonii) winter range in the
Blue Mountains of eastern Oregon and Wash-
ington (Wisdom et al. 1986). This model calcu-
lates an elk habitat effectiveness index as the geo-
metric mean of four environmental variables,
including distance from cover-forage edge, miles
of road open to motorized traffic per square
mile of habitat, habitat types and successional
stage, and type of management treatment. The
model was evaluated by Holthausen et al. (1994)
by use of expert opinion.

With HSI, HC, and HE models, it is difficult
to interpret if the resulting index value is in-
tended to represent environmental conditions or
population response. Also, the sensitivity of the
resulting habitat index values to any one envi-
ronmental variable is diminished as more vari-
ables are added to the model. This behavior is a
function of the mathematics of a geometric
mean model, and may not accurately reflect ac-
tual habitat use or population response. Finally,
as with HSI models, HC and HE models should
be used to represent relative environmental con-
ditions and as a means of generating hypotheses
about species—habitat relationships rather than

as evidence of causal relations or as reliable pre-
dictions of actual species response. Bender et al.
(1996) provided a procedure for evaluating con-
fidence intervals for HSI models; this approach
may be extended to HC and HE models as well.

A related modeling approach is habitat evalu-
ation procedures (HEP). The USDI Fish and
Wildlife Service has used HEP models exten-
sively to assess environmental conditions at the
species level (Flood et al. 1977). The procedure is
based on habitat units (HUs), which are defined
as the product of habitat quality (on a 0-1 index,
as from a habitat suitability index) and habitat
quantity. HEP models have typically been based
on HSI models that serve to estimate habitat
unit scores (e.g., Cole and Smith 1983). HEP
models may require much field data on specific
environmental attributes, such as forage quality
or quantity. However, the procedure provides a
structured way to document a repeatable assess-
ment of environmental conditions. HEP is often
used to evaluate impacts of, and mitigations for,
proposed projects on environmental conditions
for species of special interest. Roberts and O’Neil
(1985) provided a procedure for selecting spe-
cies for HEP assessments. Rewa and Michael
(1984) provided a way of evaluating environ-
mental quality for ecological guilds by using a
HEP approach.

Wakeley and O’Neil (1988) presented meth-
ods to increase efficiency in applying HEP. Their
suggestions included delineating cover types by
using remote imagery and combining types;
choosing wildlife species to model for which
there is available inventory information; choos-
ing model forms that make best use of available
inventory data and that focus on the most im-
portant life history components; designing field
sampling for environmental conditions to be
cost-effective and tailored to the range of mod-
eled conditions; and using computers to aid in
collecting and analyzing field inventory data and
conducting model analysis.
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POPULATION AND METAPOPULATION
DEMOGRAPHY AND SIMULATION MODELS

A rather vast literature has developed in the past
two decades on population viability concepts,
models, and conservation (for entry, see McCul-
lough 1996; Morris et al. 1999; Beissinger and
McCullough 2002; see also chapter 3). Popula-
tion viability analysis (PVA) usually entails using
stochastic models of population demography
and perhaps population genetics (usually for an-
alyzing effects of inbreeding and genetic drift in
small or isolated populations). Some popular
PVA modeling packages include the RAMAS se-
ries (Ferson 2002) and VORTEX (Lacy and
Kreeger 1992).

PVA can also entail individual-based, geo-
graphically referenced simulation models de-
signed to analyze habitat patch occupancy by or-
ganisms and effects of environmental changes
and disturbances on habitat patterns. In these
models, individual demography is linked to
location-specific environmental conditions, in-
cluding quality and extent of habitat (Kareiva
and Wennergren 1995; Mooij and DeAngelis
2003). Spatially explicit models predict occu-
pancy of habitat patches in heterogeneous land-
scapes by breeding individuals, as well as various
population and metapopulation trends. As ex-
amples, Akcakaya et al. (1995) assessed the effect
of spatial patterns of habitats on viability of
populations of helmeted honeyeaters (Licheno-
stomus melanops cassidix), and Raphael and
Holthausen (2002) analyzed effects of habitat
management alternatives on populations of
northern spotted owls (Strix occidentalis cau-
rina). It should be remembered, however, that
such models usually do not explicitly include
factors that can have strong influences on popu-
lation dynamics in patchy environments, such
as density-dependent survival, fecundity, and
dispersal.

Brook et al. (1999) evaluated four PVA mod-
eling packages and concluded that subtle differ-
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ences among the models can affect results and
conclusions. This outcome is not unexpected
but is a wake-up call to those who use only one
model or who rely heavily on models for deci-
sion making. It suggests that model users should
fully understand their models—the state vari-
ables, functions, and especially the implications
of what real-world attributes are not represented
well or at all. Reviews of spatially explicit popu-
lation models were provided by Dunning et al.
(1995), Holt et al. (1995), Turner et al. (1995),
and Seppelt (2005). Their general conclusions
were that such models can fundamentally aid
basic ecological knowledge of landscape phe-
nomena and the application of landscape ecol-
ogy to conservation and management. How-
ever, one caveat worth remembering when using
spatially explicit population models is that
many factors usually not explicitly included in
the model—such as density-dependent demo-
graphic effects, competitors, predators, and ef-
fects of harvest—often have strong influences on
population dynamics.

A number of models are available for analyz-
ing data on population demography and census
results. Examples include several models for an-
alyzing the Breeding Bird Survey (BBS) data
(Sauer et al. 2003), such as COMDYN (Hines et
al. 1999).

LANDSCAPE MODELS

Landscape models include a wide variety of tools
to help depict and predict habitat patch patterns
across watersheds, basins, and beyond. For ex-
ample, Westphal et al. (2003) used stochastic
dynamic programming to design optimal land-
scape patterns for persistence of metapopula-
tions of the Mount Lofty Ranges southern emu-
wren (Stipiturus malachurus intermedius), a
critically endangered bird of Australia. Knapp et
al. (2003) used semiparametric logistic regres-
sion and spatial autocorrelation to estimate
likelihoods that mountain yellow-legged frogs
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(Rana muscosa) would occupy habitat patches
across a landscape. Many other modeling tech-
niques have been devised, including a wide array
of metrics of habitat patch patterns used in GIS
(see table 8.3; O’Neill et al. 1988; McGarigal and
Marks 1995).

As with using forest stand growth and yield
models to infer wildlife habitat, models designed
to guide spatial scheduling of activities at the
landscape scale for forest harvest, transportation
infrastructures, and related pursuits are some-
times used to interpret wildlife habitat at the
landscape scale. Their use carries the same cau-
tion—that is, that landscape-scale scheduling
models may not produce the most useful or per-
tinent variables for predicting wildlife species’
response with relative certainty. Examples in-
clude using models of timber harvest scheduling
across multiple stands of varying ages to infer
extent and connectivity of wildlife habitat (Rem-
pel and Kaufmann 2003; Taylor et al. 2003).

A number of algorithms have been devised
by which optimal or satisfactory scheduling of
resource-use activities at the landscape scale are
calculated. An example is from Falcao and
Borghes (2002) who combined three random
and systematic search heuristic algorithms to
calculate the best forest management schedule
under spatial constraints (also see Boston and
Bettinger 2002). Again, the pertinence of such
models, if used to design and evaluate landscape
characteristics for wildlife presumed to be asso-
ciated with represented forest conditions, needs
to be evaluated with caution.

COMMUNITY STRUCTURE AND ECOSYSTEM
PROCESS MODELS

Of increasing pertinence to modeling and man-
aging wildlife and its habitat are ecosystem pro-
cess models. These models can be quite valuable
for understanding the ecological roles of wild-
life in structuring their communities and food
webs, and in regulating flow of energy and cy-

cling of nutrients and substances within their
ecosystems.

Systems modeling was developed in the 1950s
under the field of operations research and was
adopted by ecologists in succeeding decades
(e.g., Holling 1966; Patten 1971; Grant et al.
1997). A vast literature is available on modeling
food webs and trophic dynamics of ecological
communities and ecosystems (e.g., Montoya and
Sole 2003), with current debates in ecology fo-
cused on relations between ecosystem complex-
ity and stability (e.g., Wardle and Grime 2003)
and such dynamics of ecosystems as resilience,
resistance, elasticity, and restoration (Brang
2001; Redman and Kinzig 2003). Such models
are useful for managing wildlife when they re-
veal the specific dynamic roles played by wildlife
species and diverse communities in regulating
community and ecosystem function and struc-
ture (Kinzig et al. 2001). For example, Eichner
and Pethig (2003) found that modeled popula-
tion dynamics varied according to food chain
equilibria far more than would be predicted
from traditional Lotka-Volterra equations or
predator—prey relations.

The ECOPATH, ECOSIM, and ECOSPACE
modeling shells (Christensen and Pauly 1992;
Walters et al. 1999; Pauly et al. 2000) have been
used to study equilibrium conditions and trophic
networks in aquatic systems. ECOPATH has been
used to model ecosystem dynamics of a coral reef
in French Frigate Shoals (Polovina 1984), a sandy
barrier lagoon in Taiwan (Lin et al. 1999),
the Newfoundland-Labrador continental shelf
(Bundy et al. 2000), and other aquatic ecosys-
tems. It may also be useful if adapted for terres-
trial wildlife community and ecosystem analysis.

Other modeling tools useful for simulating
time-dynamics relations of predator—prey rela-
tions, energy flow, and other aspects of com-
munity and ecosystem functioning include use
of discrete difference equations in computer
simulation programs such as STELLA (High
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Performance Systems, Inc., Lebanon, New
Hampshire). STELLA was used by Costanza et
al. (1990) to model dynamics of coastal land-
scapes, and by Hudson (1995) to depict relations
of people and wildlife (fig. 10.4).

A major manifestation of ecosystem model-
ing in wildlife management appears in the guise
of so-called ecosystem management, which es-
sentially is the management of selected compo-
nents of a system, such as specific species and
their habitats, under the assumption of benefits
for the entire ecosystem (see chapter 11).

Decision Support and Knowledge-Based
Models of Wildlife-Habitat Relationships

In this section we review a host of model types
that deviate from the traditional population,
habitat, landscape, and WHR approaches sur-
veyed above. Decision support and knowledge-
based models include decision modeling ap-
proaches used for some time now in wildlife
habitat management, as well as a number of new
approaches just being applied to WHR assess-
ment and management. This field is developing
remarkably fast.

DECISION SUPPORT MODELS

A major challenge in conservation is managing
species and ecosystems when scientific knowl-
edge is scant and uncertainty is great. Decision
support models (DSMs) can aid this challenge
by (1) evaluating the implications of uncertainty
in meeting management goals, (2) combining
empirical data with expert judgment, and (3)
identifying key habitat elements, through sensi-
tivity testing and validation, as a basis for priori-
tizing inventory and monitoring. DSMs are tools
to aid decision makers; they should not be used
as a blanket final decision, as a replacement for
unclear thinking, or as an unexplainable black
box.
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DSMs include a wide range of tools, such as
Bayesian analyses and belief networks, data and
text mining, decision modeling such as decision
tree analysis, expert systems, fuzzy logic and
fuzzy set theory models, genetic algorithms, rule
and network induction, neural networks, relia-
bility analyses, quantitative (environmental) risk
analysis, simulation and scenario modeling, and
other approaches.

Successful use of DSMs in risk analysis and
risk management for plant and animal conserva-
tion depends largely on the availability of data or
experts, and the willingness of decision makers
to articulate their risk attitudes and decision cri-
teria. These are no small hurdles. Many DSMs
can aid in merging scientific data with expert
knowledge, although no model can replace em-
pirical field studies in basic zoology, taxonomy,
demography, and population genetics. DSMs
can neither substitute for such work nor create
knowledge and understanding where such infor-
mation is initially lacking.

The appropriate role of DSMs is as a support
structure. DSMs can be used to test the value and
cost of additional information, the importance
and influence of missing data, and the potential
utility of alternative management activities.
They can help evaluate the likelihood of various
outcomes and the social and ecological costs and
values of those outcomes. They can also provide
a framework for combining information from
multiple, disparate sources, including expert
judgment. They can provide a structure—call it
a working hypothesis—for depicting environ-
mental correlates of species in a “causal web” of
factors that affect species’ distribution, abun-
dance, and persistence.

SELECTING DSMS

Selecting decision support models for use in
species-environment planning and management
should follow several criteria. A good decision
model should be able to combine disparate data
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sources and handle missing data, combine dif-
ferent kinds of variables, clearly display influ-
ences, handle uncertainties and represent out-
comes as probabilities, and identify major
factors that can be influenced by management. A
number of DSMs, such as Bayesian belief net-
works, provide for combining empirical data
with expert judgment (Heckerman et al. 1994),
often from multiple experts.

DSMs should be able to clearly display major
influences on (the “causal web” of) wildlife pop-
ulation viability or quality of habitat, including
the values and interactions of such key environ-
mental correlates. In this way, DSMs should pro-
vide a lucid communication medium to clearly
show the intuitive effects of management activi-
ties, and to express predicted outcomes as likeli-
hoods as a basis for risk analysis and risk man-
agement. And, lastly, DSMs should be able to
provide a means to test the sensitivity of man-
agement activities and to determine which key
environmental correlates have the greatest influ-
ence on the organism to help prioritize inven-
tory, monitoring, or restoration and conserva-
tion actions.

BUILDING DSMS

Part or all of most DSMs are based on expert
judgment. There are specific methods for ex-
tracting and representing knowledge from ex-
perts, and this procedure has been called
“knowledge engineering” in the artificial intelli-
gence literature. It entails the process of inter-
viewing experts, extracting their expert knowl-
edge, quizzing them on their degree of certainty,
and accurately representing that knowledge in
computer models, such as in expert system con-
trol rules (Hink and Woods 1987).

The acceptability of using expert opinion for
analyzing WHR has been established in a num-
ber of modeling efforts and the ecological litera-
ture. Examples include using expert opinion to
interpret or supplement empirical evidence of
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population trends or habitat effectiveness (e.g.,
Cohen 1988; Blaustein et al. 1994; Holthausen et
al. 1994); to evaluate effects of environmental
pollution on forest systems (de Steiguer 1990);
to determine species richness of Diptera (Pe-
tersen and Meier 2003); to model vegetation and
faunal distribution (Pearce et al. 2001); and to
evaluate population viability of a broad array of
wildlife species and taxa under alternative forest
management plans (FEMAT 1993). However,
use of expert judgment should be approached
with due caution (Kahneman et al. 1985; Seoane
et al. 2005), as it may be broader in scope but
more biased and less accurate than empirical
data. Using expert opinion needs an established
methodology to ensure credibility and avoid
bias, such as the guidelines suggested by Meyer
and Booker (1990) and Cleaves (1994). When
used correctly, however, expert knowledge can
provide a cost-effective means of providing pre-
dictions on effects of management on biodiver-
sity and wildlife (Martin et al. 2005).

Review of New Approaches in the DSM Arena

Following is a brief review of a number of new
or more resent approaches in the DSM arena.

BAYESIAN ANALYSES AND BELIEF
NETWORK MODELING

Once the poor stepchild of traditional “frequen-
tist” statistics, Bayesian statistical approaches to
modeling WHR have been used widely to evalu-
ate wildlife populations, effects of habitat man-
agement, and other aspects of wildlife ecology
and management (Dorazio and Johnson 2003). A
straightforward application of Bayes’ theorem
was used in the PATREC, or pattern recognition,
WHR models of the 1970s, which still provide a
valuable structure for analyzing species—habitat
relations (see box 10.2). For example, Grubb et al.
(2003) used the PATREC approach of Bayesian
inference to assess nesting habitat suitability for
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Box 10.2  Bayesian modeling and wildlife habitat

What to do when sample sizes are few—as with unreplicable landscapes or with threatened species with tiny populations?
‘What to do when controls do not exist, when baseline conditions cannot be established, and when unforeseen disturbances
wreck the experiment? These and other nightmares haunt many real-world wildlife studies, in which funding levels and the
pace of human activities and natural perturbations seldom allow for perfect experimental designs.

One answer may lie in the use of Bayesian statistics, which provide a useful complement to other traditional approaches.

Bayesian approaches entail first describing a priori probabilities of outcomes given specific conditions, such as the spe-
cific environmental states E present with populations of specific sizes S. Priors are thus denoted as the conditional probabil-
ity of the environmental condition given a specific population size, or P (EIS). For various population sizes, S, a likelihood
function of priors can then be plotted. We will return to likelihood functions in a moment.

For a particular study area, the unconditional probabilities (overall frequency distribution) of population sizes P (S) and
of environmental conditions P(E) are additional factors. Then, the posterior probability P(SIE) of predicting a population
size given an environmental state can be calculated by using Bayes’ theorem: P(SIE) = [P(EIS) P(S)] / P(E). A graph can then
be plotted showing posterior probabilities of population size for various environmental states.

Another way of expressing Bayes’ theorem (Reckhow 1990, 2056) more explicitly displays the role of null hypotheses Ho
and competing alternative hypotheses H, in relation to data x:

P(x,, ..., x,1H,) - P(H,)

PO % s 50) = e S b (H) + Pryy x| H) - PO

In this formulation, the odds for H, against H, can be calculated as the ratio of the likelihood function of conditions x given
the null hypothesis, to the likelihood function of conditions x given the alternative hypothesis. This odds ratio is roughly
analogous to the Pvalue in classical statistics. The basic formula can also be extended to accommodate more than one alter-
native hypothesis.

Major advantages of the Bayesian approach are (1) it makes use of existing knowledge or expert judgment in the esti-
mation of the prior probabilities, and (2) it produces a useful formula that predicts outcomes in terms of likelihoods or
odds.

Major complaints against the Bayesian approach are (1) prior probabilities can be biased when based on best guesses
rather than on empirical research; (2) prior probability values often greatly influence the posterior probabilities, so that even
minor bias or inaccuracy will change outcomes; and (3) the environmental states must be depicted in only a few, oversim-
plified categories.

In more complex Bayesian approaches, the “independent variable” E can be partitioned into multiple components and
the unconditional and conditional likelihoods for each component evaluated separately. Other variants to the approach
provide for sequential estimation of the posteriors so that biases can be reduced by successive approximations or by contin-
uous data collection. Some authors have revised the formulae for calculating posterior probabilities under various assump-
tions of statistical distributions of the prior probabilities.

bald eagles (Haliaeetus leucocephalus) in the
western United States. Wikle (2003) demon-
strated use of a Bayesian approach to assess the
probability of spread of invasive species in an an-
alytic diffusion model of house sparrows (Carpo-
dacus mexicanus) in the eastern United States.
Bayesian approaches to analyzing metapopula-
tions have been used by Goodman (2002),
O’Hara et al. (2002), Wade (2002), ter Braak and

Etienne (2003), and others. Jonsen et al. (2003)
used meta-analysis to combine data on animal
movement from several sources in a Bayesian sta-
tistical framework.

Other uses of Bayesian statistics include se-
quential and hierarchical empirical Bayesian ap-
proaches (Gazey and Staley 1986; Ver Hoef 1996;
Oman 2000), which incrementally incorporate
new data to refine estimates of population
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response or other prediction variables and
probabilistic relations. Empirical Bayesian ap-
proaches to learning may be useful for studying
landscapes or ecosystems, which tend to be
unique, meaning there is only a sample size of
one (Schindler 1998), and also for studying pop-
ulations of threatened or endangered species that
cannot be subjected to experimental treatments
and replication. Such dynamic approaches differ
fundamentally from more traditional statistical
correlation models that produce fixed results and
that avoid use of prior information.

In fact, one of the hallmarks of Bayesian ap-
proaches in general is the use of prior knowledge
to structure probabilistic relations among vari-
ables for predicting outcomes. That is, a Bay-
esian approach incorporates prior knowledge
such as by setting a priori probabilities that in
turn influence the calculation of new states and
outcomes as posterior probabilities. In wildlife
and environmental management, this Bayesian
approach means that outcomes are represented
as likelihoods, which in turn are statements of
uncertainty (Toivonen et al. 2001) and which
can feed directly into risk analyses. Bayesian
models, however, can be rather arbitrary, in that
values of priors can greatly affect posteriors,
which means that unless the prior probabilities
are sound and unless the model structure itself is
in some way validated, the analysis can lead to
faulty predictions with unknown accuracy and
bias.

One aspect of Bayesian modeling that has be-
come popular is Bayesian belief networks (BBNS).
In its best form, a BBN is essentially a causal
model representing the major factors of some
system (Marcot et al. 2001). Such causal models
are also called dependency networks or influence
diagrams, and they display probabilistic rela-
tions among stressor and wildlife variables (e.g.,
fig. 10.5). BBNs have been used for a wide vari-
ety of ecological problems, including aspen
management (Haas 1991), wildlife assessment in
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the interior western United States (Raphael et al.
2001), and participatory resource management
(Cain et al. 1999).

DATA AND TEXT MINING

Data and text mining constitute one form of
“knowledge discovery,” or statistical learning ap-
proaches in which systematic patterns and cor-
relations among variables are discerned from
large data bases or documents (Hastie et al.
2001). The objective is to produce predictions.
The main techniques of data and text mining are
bagging (in which alternative data classification
and regression analyses are considered); boosting
(in which multiple models or classifiers are gen-
erated and weighted for prediction or classifica-
tion); and stacking and metalearning (in which
predictions from multiple models that may be
very different in structure are combined).

Whereas data mining is used on numeric
data, text mining is based on analysis of multiple
text documents by extracting and analyzing
cooccurrence of key phrases, words, and con-
cepts. Text mining may have great utility in wild-
life management for analyzing anecdotal written
descriptions of historic habitat conditions, sto-
ries of wildlife encounters, and other nonquanti-
tative information sources. We know of no such
use to date.

Examples of data and text mining modeling
tools are CBA (classification based on associa-
tion, developed by the School of Computing at
the National University of Singapore) and Weka
(a collection of machine learning algorithms
written as open-source software in Java code de-
veloped by the University of Waikato).

DECISION TREE ANALYSIS

Decision tree analysis is a more traditional ap-
proach than most of the other techniques dis-
cussed in this section. Decision trees typically
depict a series of decisions with various chance
outcomes denoted by probabilities. Fully speci-
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Figure 10.5. Hypothetical example of a Bayesian belief network model. (A) The model includes alternative
management decisions (nodes “Timber management” and “Road development”); the intermediate habitat
attributes they would affect; the final influence on a wildlife species of interest; and utilities (“social value,”
incorporating social benefits and economic costs) of wildlife outcomes. The numbers in the timber
management node reflect overall costs of each decision, given the probability structure of the model, and the
costs and benefits associated with each outcome. (B) The conditional probability table (CPT) underlying the
node “Marten pop. density,” illustrating the combined effects of adjusted habitat density, which accounts for
management influence on snags and down logs (denning habitat for marten) and road-people effects
(representing disturbance of marten). For example, if adjusted habitat density is high but road-people effects are
also high, there is only a 50% likelihood of marten populations being high. Numbers in CPTs can be derived
from empirical data, best professional estimates, or a combination of the two. (Model constructed by B. Marcot
using the program Netica, by Norsys, Inc.)

345



Part Il

fied decision trees also show costs or benefits of
each decision, effects of chance outcomes on
those values, overall utilities of final outcomes,
and expected values of each decision pathway.
The best decision is the one with the lowest ex-
pected cost or highest benefit. Expected values
are calculated as the sum of the products of
probabilities and values along a given decision
pathway. An example of a hypothetical decision
pathway is shown in figure 10.6 and discussed in
box 10.3.

Decision trees can be crafted from expert
opinion (Failing et al. 2004) or induced from
data analysis (Kampichler and Platen 2004).
They can be a very useful way to explore poten-
tial costs and benefits of alternative conservation
actions, such as explored by Maguire et al.
(1988) for conservation of black-footed ferrets
(Mustela nigripes) in Montana. New uses of deci-
sion tree modeling include induction of decision

No disturbance
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structures from empirical data. An example is
from Stockwell et al. (1990), who induced deci-
sion trees to predict density of greater gliders
(Petauroides volans) in Australia. However, vari-
ous problems with decision tree analysis include
the difficulty of representing a full decision
pathway, identifying all major chance responses,
estimating probabilities of outcomes, and esti-
mating future costs and benefits of current and
future decision actions.

CLASSIFICATION AND REGRESSION TREES

Classification and regression trees (CARTs) are
diagrams that depict prediction variables found
to have the greatest explanatory power for some
response variable (Breiman et al. 1984). Classifi-
cation trees are based on categorical response
variables (such as categories of pelage color),
whereas regression trees are based on continu-
ous response variables (such as body length).
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Major disturbance ($335,000) Unsuccessful
35% 0 25% -$300,000
($335,000) No restoration ($560,000)
-$300,000
($410,000)

Figure 10.6. Hypothetical example of a decision tree designed to evaluate whether to translocate a threatened
wildlife population or acquire land for a reserve. Boxes = decision nodes, circles = response nodes, with
probabilities of various chance outcomes. Values above the lines are (hypothetical) dollar costs for each activity;
and values below the lines are dollar expected values, given probabilities of chance outcomes. (Model
constructed by B. Marcot by using the program DecisionPro, by Vanguard Software Corporation.)
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Box 10.3  Using decision trees for conservation planning

Decision trees are used widely in many kinds of decision making. In decision tress, decision points are shown as boxes and
responses are shown as circles. To illustrate, the hypothetical scenario shown in figure 10.6 is explained as follows. You have
the option of translocating a threatened population for $280,000 or acquiring the land for establishing a reserve for only
$110,000. If you acquire the reserve, management of the land will change to allow natural disturbance regimes to resume.
You estimate the chance of no disturbance events in the near term to be low, about 5%; the chance of a minor disturbance
in the near term to be about 60%; and the chance of a major disturbance to be 35%. If there is a minor disturbance, there is
a further 30% chance of significant adverse loss of habitat and a 70% chance of no significant loss. The adverse loss will cost
$25,000 to curtail (e.g., fighting a fire, stopping flooding), and then you will be faced with a decision of mitigating the loss
for $45,000, or not mitigating it and thereby losing the population. In the case of a major disturbance event, restoration will
cost $150,000 and has a 75% chance of being successful, but if you choose not to conduct restoration, it will be an unrecov-
erable loss, and further mitigation will cost $300,000. If you choose to do restoration and it is unsuccessful, then the popu-
lation is lost and further mitigation will also cost $300,000.

The question in this scenario is, What to do?

The central initial question is, Should you purchase the land for the reserve or translocate the population? Which deci-
sion has the lowest expected cost? Which has the highest probability of population persistence regardless of the cost? and
what is that associated cost?

These questions are answered by solving the decision tree, which means calculating expected values for each decision
node. This solution is done by backwards calculation—that is, starting at the end of each branch of the tree and working back-
wards. Expected values are the running sum of the products of probabilities of chance outcomes times the cost (or benefit, if
so displayed) of each event or decision. For example, in figure 10.6, on the bottom outcome of “major disturbance,” the ex-
pected value (cost) of doing restoration, not knowing initially if it will be successful, is $335,000, which is (75%)($260,000) +
(259%)($560,000). Note that the values $260,000 (successful outcome) and $560,000 (unsuccessful outcome) are the sums of
expected values for each respective pathway through the decision tree. The best decision to be made at any given decision
node in the tree (the boxes in fig. 10.6) would be the one that has the lower expected value of cost. So if there is a major distur-
bance, you should do restoration (expected cost = $335,000) rather than not (expected cost = $410,000).

Calculating backwards through the rest of the tree, it turns out that the expected value of acquiring the land for a reserve,
given all the probabilities and costs of subsequent disturbances, losses, and mitigation, is about $201,000, whereas the ex-
pected value of translocating the population is a significantly higher $280,000 (again, this is purely a hypothetical example).
So the prudent—Iless expensive—decision is to purchase the land.

However, the expected values can be sensitive to the accuracy of the future cost estimates, accuracy of the probabilities of
outcomes, how the tree is structured in the first place, and the difference in risk among alternative decision pathways. On
this last point, one should consider a decision’s risk in addition to its expected value. This is told by assessing all possible out-
comes that could result from an initial decision—that is, the range of expected values shown along each decision pathway in
the decision tree. One aspect of risk is denoted by the joint probability of outcomes. For example, the probability of a minor
disturbance and an adverse loss is (60%)(30%) = 18%, and the probability of a major disturbance and an unsuccessful mit-
igation is (35%)(25%) = 9%. These may be low-enough odds to risk the land acquisition decision if cost is less of a factor.

Another systematic way to account for risk is to incorporate a risk attitude in calculations of the expected values. The
risk attitude of the decision maker—that is, whether the decision maker is risk-averse, risk-neutral, or risk seeking—can
greatly alter expected values and best-decision pathways. Risk attitude can be determined by posing hypothetical betting
scenarios to the decision maker—for example, asking how much the decision maker would be willing to receive for certain
as an equivalent to a 50% chance of receiving $100,000. In our example, if the decision maker says a sure receipt of $40,000
is just as good as a 50% chance of receiving $100,000, this response defines the decision maker’s risk attitude for the project.
Depicting such trade-offs in a utility function can be used to modify the expected values in the decision tree. In such an ex-
ample, the new expected values are now approximately $302,000 to acquire the land and $280,000 to translocate the popu-
lation; clearly, translocation now costs less, so translocation is the preferred decision if cost is the main factor. If absolute
numbers are hard to come by, one can also simply determine what risk attitude would be needed to equalize the expected
values of both decisions and then determine if one’s attitude is more or less risk seeking than that; this determination would
tip the balance in favor of one decision over another.
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Much has been written on variations and sta-
tistical methods and considerations in CART
modeling, and CART has been used rather ex-
tensively in ecological modeling (De’ath and
Fabricius 2000). As examples, Lehmkuhl et al.
(2001) used a regression tree to determine
which life history attributes best predict level of
viability risk for a sample set of 60 wildlife spe-
cies in the Pacific Northwest of the United
States (fig. 10.7). Munger et al. (1998) used
CART modeling to predict occurrence of Co-

The Measurement of Wildlife-Habitat Relationships

lumbia spotted frogs (Rana luteiventris) and Pa-
cific treefrogs (Hyla [=Pseudacris] regilla) from
U.S. National Wetland Inventory data. Grubb
and King (1991) predicted effects of human dis-
turbance on bald eagles using classification
trees. Andersen et al. (2000) used regression
trees to model desert tortoise (Gopherus agas-
sizii) habitat in the Mojave Desert. Kintsch and
Urban (2002) used classification and regression
trees to determine the degree to which biotic
communities could be predicted by parameters

Imperiled (1), secure (ll), and intermediate (lll)
species risk groups

I
Structural versatility <56

1
Structural versatility =56

L
Population distribution = 5

Figure 10.7.
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Population distribution <&
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Example of regression tree modeling of three categories of species viability risk levels predicted

from life history and habitat use attributes, based on 60 wildlife species in the Pacific Northwest of the United
States. Structural versatility is an index of the percentage of structural condition classes of vegetation types used
by each species; population distribution is an index of the geographic range of each species; and habitat
versatility is an index of the percentage of vegetation types used by each species. In this model, none of the life
history attributes of species, including reproductive rate, mean number of progeny, and other factors, were
statistically significant predictors. (From Lehmkuhl et al. 2001, 484 [fig. 4] reprinted with permission of Oregon

State University Press Copyright 2001.)
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of their physical environment, and to identify
focal indicator species.

De’ath (2002) proposed a method of devising
multivariate regression trees to model species—
environment relations, which may hold promise
in much WHR work. CART analyses can be
done in many general statistical software pack-
ages, although there are also specific programs
developed for this purpose, such as CART and
MARS (Salford Systems) and SIPINA (D. A.
Zighed and R. Rakotomalala, University of
Lyon).

EXPERT SYSTEMS

Once the shining future of artificial intelligence
research, the use of expert systems seems to have
faded in recent years. The classic framework of
expert systems is in the form of if-then-else con-
trol rules that guide classification, diagnosis, or
other evaluation of some condition. Control
rules are based on a human expert’s understand-
ing in some narrowly defined field, are typically
couched in terms of degrees of confidence or
probabilities, and when chained together form
an interactive system by which some problem
can be solved by querying the expert’s knowl-
edge. Classic expert systems suffered from the
difficulty of combining opinions from multiple
experts (although procedures were eventually
developed for this purpose; e.g., Clarke et al.
1990) but excelled in combining qualitative and
quantitative information, in handling un-
knowns, and in explaining reasoning behind
queries. Some early examples of the use of expert
systems in WHR include Marcot (1986) and
Robertson et al. (1991).

Current forms of expert systems have devi-
ated from the classic control rule format, where
expertise is now integrated into other model
structures. While these are not true expert sys-
tems in the classic sense, they have advanced the
field by incorporating expert knowledge into
other modeling approaches, such as GIS, fuzzy

logic models, and decision analysis. Such hybrid
models—perhaps now call them “expert-based
systems”—have been devised for such problems
as conservation of rivers (Pedroli et al. 2002) and
coral reefs (O’Connor 2000). Commercially
available hybrid expert system shells include
DXpress (Knowledge Industries), which is used
in a Bayesian-based modeling shell; CORVID
(EXSYS Inc.), for building online expert advi-
sory systems; and others.

FUZZY LOGIC AND FUZZY SET MODELS

Fuzzy logic or fuzzy set models describe the log-
ical relations among factors that affect the de-
gree to which some entity (such as a species) be-
longs to a particular set or outcome (such as
having a particular level of viability). Confusing
to many users, a fuzzy logic value is not the same
as a probability. Values in fuzzy logic (often ex-
pressed between 0 and 1 or between —1 and +1)
refer to the strength of evidence that would put
some entity into some set (McNeill and Frei-
berger 1993)—for example, evidence that a par-
ticular wildlife population belongs to the set of
threatened species (Regan and Colyvan 2000). A
popular fuzzy logic modeling shell is NetWeaver
(M. C. Saunders and B. J. Miller, Pennsylvania
State University).

Fuzzy logic models have been devised for a
variety of classification and evaluation prob-
lems, such as mapping historic forests in Michi-
gan (Brown 1998), predicting coral reef develop-
ment (Meesters et al. 1998), and prioritizing
habitat management for a salamander (Pyke
2005). Fuzzy logic models have also been used in
procedures for evaluating suitability of lands for
conservation (Stoms et al. 2002) and have been
integrated with GIS in risk assessment tools
(Reynolds et al. 1997; Bojorquez-Tapia et al.
2002) (also see fig. 10.8). Advantages of a fuzzy
logic model are that it is relatively easy to build;
the relation between some environmental factor
and a species response, for example, can be easily
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Figure 10.8. Example of the structure of a fuzzy logic model predicting density of white-headed woodpecker
(WHW; Picoides albolarvatus) territories, using the NetWeaver fuzzy logic modeling shell (Reynolds et al. 1997).
WHWvegCTSS = total area of vegetation cover types and seral stages usable by WHWs; WHWhomerange =
mean home range size of a WHW territorial pair; WHW capability = effective area of habitat divided by home
range size; WHWsnags = influence of snag density on WHW capability; humanPopProx = relative proximity of
human habitats to WHW habitat; roadDensity = relative density of roads within WHW habitat; fragmentation
= influence of WHW habitat fragmentation on WHW capability; landscapeFrag = relative degree of
fragmentation of WHW vegetation conditions. The functions refer to fuzzy arithmetic. (Model constructed by
B. Marcot by using the program NetWeaver, by Penn State University.)
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depicted in user-defined curves expressing
strength of evidence. Fuzzy models are useful for
quickly building knowledge-based systems to
compare relative outcomes among alternative
conditions. A disadvantage of fuzzy models is
that it is unclear how to interpret and, especially,
validate the final results, such as total strength of
all evidence for some outcome, as a fuzzy value is
neither a statement of probability nor a directly
measurable empirical variable.

GENETIC ALGORITHMS

Genetic algorithms are computer programs de-
signed to mimic the evolution and adaptation of
genetically based populations by retaining char-
acteristics denoted as having “adaptive advan-
tage” and discarding maladaptive behaviors. Ge-
netic programs include the “game of life” (also
called artificial life; Stein 1991), cellular au-
tomata, and related programs (Goldberg 1988).
As examples, genetic modeling has been used
successfully to solve problems of scheduling op-
timal spatial forest harvest (Boston and Bet-
tinger 2002), to model site selection by species
(Moilanen and Cabeza 2002), and to test models
that use indicator species to predict species rich-
ness (Thomson et al. 2005).

RULE AND NETWORK INDUCTION MODELS

These modeling techniques take a fully or par-
tially specified database and induce an expert
rule set that optimally (or otherwise) describes
the (known) outcomes based on the descriptor
variables in the examples (Jeffers 1991). For in-
stance, a database might consist of a series of ob-
servations where a species is present or absent,
along with variables representing the environ-
mental conditions at each site. A rule induction
model would produce a “key” of sorts that iden-
tifies which environmental variables best ac-
count for presence and absence of the species. In
this way, rule induction models are similar to
classification and regression tree models but can

handle more kinds of data (categorical, continu-
ous, binary, and ordinal) and, most usefully,
missing data. A variation of the rule induction
approach is used to induce a network of factors
that can then be developed into an influence
diagram, Bayesian belief network, loop model,
decision tree, or other tools. An example of a
rule induction modeling shell is See5/C5 from
Rulequest Research (Australia), and a network
induction modeling shell is BKD (Bayesian
Knowledge Discovery) from The Open Univer-
sity, United Kingdom.

Rule and network induction models are very
powerful for helping to make sense of a database
of known examples. In this way, they are similar
to data mining models but produce specific tools
for prediction as well as hindcasting (explana-
tion). A common method used in rule and net-
work induction models is the ID3 algorithm
(Quinlan 1986; also see Shapiro 1987). More re-
cently developed is the EM algorithm used in
Bayesian networks, which is applied to learning
from new data to update model probabilities
and to induce network structures (Lauritzen
1995; Bauer et al. 1997). As an example, Uhr-
macher et al. (1997) used a fuzzy-based rule in-
duction approach to analyze the dynamic be-
havior of an ecological system by generalizing
system behavior and dynamics from specific
cases. Lehmkubhl et al. (2001) presented an opti-
mally generated rule to predict level of viability
risk based on species’ life history characteristics,
induced from 60 examples species in the Pacific
Northwest of the United States by using the ID3
rule induction algorithm (fig. 10.9). The rule in-
duction approach tends to include predictor
variables that best match given examples even if
the correlation among variables is not statisti-
cally significant (as with regression trees). Thus
the user needs to evaluate whether results are
still biologically meaningful and useful, even if
they are not statistically significant in the classic
parametric sense.
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A. Population is contiguous.
B. The organism forages underwater or aerially, or foraging substrate is unknown.
C. The upper elevation range of typical or regular occurrence is up to 1000 ft. (no identification)
CC. The upper elevation range of typical or regular occurrence is up to 3000 ft. (no identification)
CCC. The upper elevation of typical or regular occurrence is up to 5000 ft. Group 111
CCCC. The upper elevation range of typical or regular occurrence is =5000 ft. Group 1
BB. The organism does not forage underwater or aerially, and foraging substrate is not unknown.
C. The average age at first breeding (females) is <6 months. (no identification)
CC. The average age at first breeding (females) is 1 year. Group 11
CCC. The average age at first breeding (females) is 2 years.
D. The structural versatility of the species is <99. Group 11
DD. The structural versatility of the species is >=99. Group 111
CCCC. The average age at first breeding (females) is 3 years. Group 111
CCCCC. The average age at first breeding (females) is 4+ years. Group 11

AA. Population distribution consists of gaps.
B. The taxonomic order is Caudata.
C. The structural versatility of the species is <90.50. Group 11
CC. The structural versatility of the species is =90.50. Group 111
BB. The taxonomic order is Anura. (no identification)
BBB. The taxonomic order is Squamata. Group I11
BBBB. The taxonomic order is Falconiformes.
C. The average age at first breeding (females) is <6 months. (no identification)
CC. The average age at first breeding (females) is 1 year. Group 11
CCC. The average age at first breeding (females) is 2 years. Group I
CCCC. The average age at first breeding (females) is 3 years. Group |
CCCCC. The average age at first breeding (females) is 4+ years. (no identification)
BBBBB. The taxonomic order is Charadriiformes. Group 11
BBBBBB. The taxonomic order is Strigiformes.
C. The habitat versatility of the species is <34.50. Group 1
CC. The habitat versatility of the species is >=34.50. and <50.00. Group 111
CC. The habitat versatility of the species is >=50.00. Group I1
BBBBBBB. The taxonomic order is Apodiformes.
C. The habitat versatility of the species is <53.50. Group 11
CC. The habitat versatility of the species is >=53.50. Group 1II

Figure 10.9. Example of a rule induction model called SARA (Species at Risk Advisor), using the ID3 rule
induction algorithm (see text for explanation), of species viability risk levels predicted from life history and
habitat use attributes. This model was derived from the same data set used in figure 10.7. (From Lehmkuhl et al.
2001, 48687 [fig 6]; reprinted with permission of Oregon State University Press Copyright 2001.)

NEURAL NETWORKS the examples. The dummy variables (“percep-

Neural networks are models that predict the
value of some response variable (such as popula-
tion density of some wildlife species) from a set
of predictor variables (such as habitat attributes)
by generating intermediate dummy variables
and juggling their weights and relationships.
Neural networks are constructed from a set of
examples and are “trained” by iteratively read-
justing weights and functions among the vari-
ables to produce a set of equations that best fit
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trons” in neural networking parlance), created
by training and solving a neural network, are in-
termediate combinations of the predictor vari-
ables (Kosko 1990).

Overall, neural network models do not pro-
duce explainable networks, particularly the in-
termediate network strata (the dummy vari-
ables), which are the critical parts of the
networks that most influence the predicted out-
comes. Instead, these models result in a “black
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BBBBBBBB. The taxonomic order is Piciformes.
C. The habitat versatility of the species is <50.00. Group 111
CC. The habitat versatility of the species is >+50.00. Group 11
BBBBBBBBB. The taxonomic order is Passeriformes.
C. ltis a “patch” species, likely using only 1 homogenous habitat patch during the life cycle. Group Il
CC. It is a “mosaic” species, likely using an aggregate of habitat patches but 1 structural stage.
D. The migration or seasonal movement is <100 km. (no identification)
DD. The migration or seasonal movement is 100 -100 km. Group II
DDD. The migration or seasonal movement is >1000 km. Group 11
DDDD. The species is non-migratory. Group I1
CCC. It is a “generalist” species, likely using all or many patch types, & >1 structural stage. Group I
CCCC. It is a “contrast” species, likely requiring contrast between 2 structural stages in close proximity.
(no identification)
BBBBBBBBBB. The taxonomic order is Rodentia.
C. The structural versatility of the species is <28.50. Group |
CC. The structural versatility of the species is >=28.50. Group 11
BBBBBBBBBBB. The taxonomic order is Carnivora. Group 11

AAA. Population distribution consists of patchily distributed populations.

B. The average age at first breeding (females) is <6 months. Group 11
BB. The average age at first breeding (females) is 1 year. Group |
BBB. The average age at first breeding (females) is 2 years. Group Il
BBBB. The average age at first breeding (females) is 3 years.
C. The habitat versatility of the species is <34.50. Group |
CC. The habitat versatility of the species is >=34.50. Group 11
BBBBB. The average age at first breeding (females) is 4+ years. Group 111

AAAA. Population distribution consists of isolated population(s).

B. The migration or seasonal movement is <100 km. Group 111

BB. The migration or seasonal movement is 100-100 km. Group 11
BBB. The migration or seasonal movement is =1000 km. Group |

BBBB. The species is nonmigratory. Group |

AAAAA. Population distribution is scarce.

B. The habitat versatility of the species is <16.00. Group Il1
BB. The habitat versatility of the species is =16.00. Group |

Figure 10.9. Continued

box” that may nonetheless be useful as a tool to
calculate outcomes for some tasks. Neural net-
works are more useful for interpolating values of
some continuous variables, such as topographic
relief or some climate variable (Cook and Wolfe
1991; Derr and Slutz 1994; Christopherson
1997), than for extrapolating values beyond the
domain of the predictor variables. They are not
particularly useful for aiding understanding of
the underlying ecological causal web.

Neural networks have been used in natural
resource and wildlife management in a variety of
problems, such as developing vegetation man-
agement plans (Deadman and Gimblett 1997),

monitoring and simulating changes in forest
resources (Gimblett and Ball 1995), forecast-
ing recreational use of wilderness areas (Pattie
1992), classifying land cover types from Landsat
imagery (Skirvin and Dryden 1997), and other
areas. Yeh and Li (2003) devised interesting
models of urban planning by integrating GIS,
cellular automata, and neural networks. Monteil
et al. (2005) used neural networks to determine
correlates to bird species richness in forest
patches. Olden (2003) used a neural network
model to predict species composition of temper-
ate lake fish communities from habitat attrib-
utes, and suggested that such predictive models
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are powerful ways for explicitly considering and
conserving species membership and their func-
tional roles in the community (fig. 10.10).

Liu et al. (2003) compared two neural net-
work modeling approaches and three traditional
statistical methods for classifying forest inven-
tory data into ecological types. They reported
that accuracy of the neural network models was
at least 90% and did as well as the kth-nearest-
neighbor statistical classification method. How-
ever, as with all neural network models, theirs
failed to explain the underlying causal web
structure that accounted for the accurate results.

Input

Surface area =

Hidden

Maximum
depth > -:\\\
NS
Volume =———fp kk\\\“' L%

Shoreline
perimeter b
Elevation =

Total dissolved >
solids

pH —Pp

Growing-degree
days b

Summer >

stratification

Bias

Figure 10.10.
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Still, neural networks can be rather flexible and
can be combined with other modeling ap-
proaches (such as GIS; see “GIS-Based Models”
section above). Ejrnaes et al. (2002) combined
ordination techniques with neural network
modeling to successfully predict habitat quality
(in terms of species richness, nativeness, rarity,
and beta diversity) of vascular plant species.

Examples of commercially available neural
network modeling shells include the Neural-
Works series (NeuralWare Inc., Carnegie Penn-
sylvania) and SNNS (Stuttgart Neural Network
Simulator, University of Stuttgart).

Output

Probability of
occurrence

— Species 1

—Pp Species 2

——J Species 26

—P Species 27

Example of a neural network model of the presence and absence of 27 fish species as a function

of nine lake habitat variables. Nodes marked “Hidden” are used to determine the best combination of weights
among all input variables. Note the use of “Bias” variables that account for unexplained variance (similar to the
nodes marked ?in fig. 10.1). (From Olden 2003, 857 [fig. 1].)
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RELIABILITY MODELS

Reliability analysis refers to equations that depict
the probability of failure of a system component
(such as a species within an ecosystem) over
time. Also called survival analysis and failure
time analysis, reliability modeling describes and
depicts system trends and patterns more than it
represents and explains the underlying influ-
ences. As used in reliability engineering, failure
models are typically based on negative exponen-
tial or other probabilistic distributions of MTBF
(mean time between failures) of some element
(such as an electronic component; Barlow
1998). Reliability analysis is inherently proba-
bilistically based, and in that sense corresponds
well with how population viability is viewed as a
probabilistic phenomenon. However, reliability
models have not been used much in WHR mod-
eling, although the probability distributions may
be useful for calculating expected persistence of
species or habitat conditions, given effects of
stressors.

QUANTITATIVE (ENVIRONMENTAL)
RISK ANALYSIS

Quantitative or environmental risk analysis, as a
general topic, includes a very wide variety of
models and tools used to estimate likelihoods of
outcomes, given alternative management actions
and subsequent environmental conditions, and
to clearly display and interpret uncertainty in
such decisions (Morgan and Henrion 1990).
Quantitative environmental or ecological risk
assessment is generally used to collect, organize,
analyze, and present scientific information to
improve decision making (Serveiss 2002). Tools
used in risk analysis can include all of the mod-
els discussed in this chapter. Additionally, the
RAMAS Risk Calc modeling shell (Ferson 2002)
was specifically designed to help analyze species
viability in a risk assessment framework.

There is also a formal quantitative risk analy-
sis (QRA) methodology developed by the U.S.

Environmental Protection Agency (EPA 1996).
QRA has been used mostly to evaluate toxico-
logical human health risks. QRA has also been
used successfully with laboratory toxicity tests
on single species to help predict impacts on
aquatic ecological communities (de Vlaming
and Norberg-King 1999).

LOOP ANALYSIS MODELS

Loop analysis models are used to represent the
patterns of relationships among variables. Loop
analysis draws from graph theory, in which vari-
ables are shown as nodes and their relations as
paths or arcs between the nodes (Puccia and
Levins 1985). A loop diagram can be a useful
starting point to depict a causal web, as in the di-
agrammatic phase of modeling. A simple loop
diagram can be evaluated for its qualitative pat-
terns (Dambacher et al. 2003a, 2003b), such as
degree of connectivity and stability of food
webs. More sophisticated loop diagrams can also
include quantitative causal modeling or path
analysis. The patterns of loop diagrams can be
evaluated using what is called structural equa-
tion modeling, which has been used in ecology
(Iriondo et al. 2003; Pugesek et al. 2003).

An early application of loop analysis was
demonstrated by Marcot and Chinn (1982), who
devised graph theory measures of habitat con-
nectivity. Examples of habitat maps represented
as graphs and nearest-neighbor adjacency ma-
trices are shown in figure 10.11. The adjacency
matrix of a “habitat graph” can be mathemati-
cally analyzed for various connectivity features,
such as the average juxtaposition of each habitat
patch; presence of habitat patch “cut points”
whose disturbance might disconnect the graph
(e.g., node 5 in fig. 10.11C); overall connectiv-
ity of the graph (e.g., mean number of arcs
per node); and distance (number of interven-
ing habitat patches) between any two nodes
(patches). Their analysis demonstrated that lin-
ear features such as roads and riparian areas
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Habitat network
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011101
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3
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Figure 10.11.

Habitat network

10000

5 01111

01111
01110
A 11101

Adjacency matrix

Example of a habitat map and its graph theory analog. Note how each patch on the habitat map

is represented by a node on the habitat network, and patches that share a common edge are shown by a I in the
adjacency matrix. Matrix algebra calculations can reveal further information about connectivity of individual

nodes and of the overall map.

usually create cut points in a graph and serve as
nodes with the highest local connectivity to
other nodes. This condition may help explain
the high species richness of native linear fea-
tures, such as riparian areas, and the potential
for disproportionately disrupting a landscape
from anthropogenic linear features, such as
roads and transmission line corridors.
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Other authors later suggested various graph
theory measures of habitat patch patterns across
a landscape (e.g., Cantwell and Forman 1993;
Ricotta et al. 2000; Urban and Keitt 2001). Bunn
et al. (2000) demonstrated the use of graph the-
ory to analyze the very different degrees of con-
nectivity of a given landscape for American
mink (Mustela vison) and prothonotary war-
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blers (Protonotaria citrea). They analyzed, for
each species, the functional distance between
reachable habitat patches by using least-cost
path modeling and discovered that habitats
within their test landscape were fundamentally
connected for mink and unconnected for war-
blers. In general, a graph theory and loop analy-
sis approach to assessing habitat patch patterns
and connectivity may have advantages over
more complicated mathematical spatial indexes
(see table 8.3; O’Neill et al. 1988; McGarigal and
Marks 1995) by being simpler to explain and cal-
culate, and by having more direct pertinence to
movement patterns of animals.

This overview of various traditional and
newer model constructs does not include a num-
ber of other approaches with potential for WHR
analysis and management, such as rough set the-
ory, a mathematical tool similar to fuzzy set the-
ory to manage uncertainty and vagueness in data
sets (Berger 2004, Tan 2005). Doubtless, many
new modeling concepts and tools will continue
to be developed that push the envelope of tradi-
tional statistical analysis and that may find utility
for WHR assessment and management. This is an
exciting time for wildlife modelers.

Models for Habitat Conservation

In this section, we briefly review two topics re-
lated to modeling habitat conservation for wild-
life: models that aid optimal allocation of lands
for designating conservation areas, and scenario
models that aid overall wildlife habitat and land
use planning.

Models for Optimizing Land Allocations

A host of modeling approaches has appeared in
the past decade to aid optimal design of conser-
vation areas. Kingsland (2002) suggested that
the science of nature reserve design has bene-

fited from optimality modeling derived from
operations research from the 1970s and 1980s, in
a decision analysis framework. More recently,
use of simulation modeling of vegetation growth
and use of new optimization algorithms have
provided the field of reserve design with many
practical tools.

Many tools used for design of reserves and
conservation areas draw from some of the mod-
eling approaches discussed above. For exam-
ple, the approach used by Strange et al. (2002)
uses genetic algorithms of “evolutionary self-
organization” to find the optimal solution.
Guisse and Gimblett (1997) used neural net-
works to help map conflicting recreational im-
pacts on state parks. Other hybrid design models
were suggested by Nalle et al. (2002).

A popular model for weighing costs and val-
ues of land areas for conservation area planning
is SITES, which produces alternative maps of
boundaries of potential reserves to meet stated
conservation objectives, such as protection of
undisturbed ecosystems. SITES is complicated
to run and understand, but it has utility in de-
signing reserves and regional conservation plans
(Carroll et al. 2002). An advantage of SITES is
that one can specify some selected land alloca-
tion boundaries to be inviolate so as to aid con-
servation planning within a landscape already
partitioned under existing land use plans.

Many other models of conservation area
planning have been proposed, such as using a fo-
cal species (e.g., moose, Alces alces) to design re-
serves in Nova Scotia, Canada (Snaith and Beaz-
ley 2002). Rothley (2002) proposed a method of
applying multiobjective integer programming
(MOIP) to surrogate design criteria, such as re-
serve size or connectedness. McDonnell et al.
(2002) used nonlinear integer programming in
their algorithm to design reserves in Northern
Territory, Australia. Cumming (2002) used habi-
tat shape geometry to design reserves for staving
off invasive species. Many other examples and
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approaches based on concepts of reserve com-
plementarity (Williams et al. 2000), redundancy
(ReVelle et al. 2002), representativeness (Powell
et al. 2000), and other criteria are available in the
literature.

The lessons to be drawn from such a variety
of approaches are that (1) there is no one single
approach to reserve design that meets all conser-
vation area planning objectives; (2) thus it is
critical to articulate those planning objectives
first and not let the design model dictate them;
and (3) a combination of models or trying alter-
native design algorithms may be a useful way to
test the practicality and utility of their results.

Scenario Modeling

In one sense, most wildlife habitat planning in-
volves exploring alternative scenarios for land
allocation, habitat modification, and natural re-
source use. There are also more formal ap-
proaches to scenario planning useful for natural
resource and wildlife conservation (Bennett et
al. 2003). In this sense, a “scenario” can be a spe-
cific level of expected use of a resource or land
area, and even a worldview of how resources
ought to be used or conserved, such as under
utilitarian, humanistic, ecological, or other ethi-
cal stances (Callicott et al. 1999). In fact, scenario
modeling can even test implications of alterna-
tive worldviews (Marcot et al. 2002).

A scenario model is a type of systems model
designed to understand social and ecological
systems (Bennett et al. 2003). In this sense, sce-
nario modeling of social-economic-ecological
systems has been around since the 1970s (e.g.,
Jantsch 1972). In scenario modeling, wildlife
management is viewed as part of a broader so-
cial, economic, and ecological system (Walker et
al. 2002). Scenario planning can use specific
kinds of models discussed above to assess effects
of alternative social direction and resource use
interests on wildlife conservation, ecosystem ser-
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vices, and human communities. Irwin and Free-
man (2002) used such an approach to evaluate
social and ecological implications of conserva-
tion options for the Tallapoosa River in Alabama
under various adaptive management scenarios.
Sheppard and Meitner (2005) evaluated forest
planning scenarios with stakeholder groups by
using multicriteria analysis and visualization
methods.

Validating Wildlife—Habitat Relationship Models

Most of the types of models discussed in this
chapter are difficult to validate. In part, this dif-
ficulty exists because the models consist of
many relations and entities that confound sim-
ple prediction (Gentiol and Blake 1981). Many
also represent outcomes in abstruse terms, such
as unitless indexes, fuzzy set membership, Bay-
esian posterior likelihoods, or influence webs,
which sometimes defy simple interpretation
and easy comparison with empirical observa-
tion. The problem of validation of the more
avant-garde modeling approaches discussed
above has received limited attention in the wild-
life literature.

The concept of model validation should be
addressed in any modeling exercise. Analyses
that cannot be falsified or otherwise rigorously
tested are essentially little more than belief sys-
tems and have little to no value in science. It is
therefore essential in the model-building pro-
cess to represent variables and their relations as
empirically quantifiable entities. For example, it
is easy to build an expert system, a Bayesian be-
lief network, or an influence diagram with
vaguely worded variables such as “habitat qual-
ity” and “species response.” It is more difficult,
but essential, to craft such models using empir-
ically verifiable variables, such as area of a spe-
cific vegetation condition or density of repro-
ductive individuals.
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Species-habitat models built using various
kinds of complicated DSM tools often approxi-
mate habitat evaluation or suitability models
(e.g., Adamus 1996) and could be evaluated by
validating their specific ecological predictions.
Other approaches may include using Bayesian
statistics to use new information to test, cali-
brate, and refine certain kinds of network mod-
els. Also see Reinhardt et al. (1992), Preece
(1994), and Sequeira et al. (1996) for other ex-
amples of validating decision support- and
knowledge-based models.

Purposes of Validation

Validating wildlife-habitat models should be
part of each step in building and using such tools
(Marcot et al. 1983). Model validation is best
viewed as a general approach to developing, cali-
brating, and testing models, and should be con-
ducted in a variety of ways throughout the
model development and application process.

Aspects of validating a model (see table 10.1)
include:

1. Verifying the model—veritying that math-
ematical equations are correct or that the
computer program code has been written
without bugs

2. Testing the audience—ensuring that the
audience for whom the model is intended
will accept and use the tool

3. Running the model—confirming that the
model can be run with available or ob-
tainable data

4. Assessing purpose and context—ensuring
that the purpose of the model and the
conditions in which it is to be used have
been clearly stated and adhered to in its
use

5. Testing the output—assessing whether the
output of the model matches real-world
biological conditions

Model validation is typically associated with just
the first and final items on this list. Each item,
however, contributes to successful development
and application of a wildlife-habitat model.

VERIFYING THE MODEL

Ensuring that formulae and computer code are
written correctly is a simple but important as-
pect of model validation. A similar task is docu-
mentation. Documentation refers to explicitly
explaining the development procedure used to
create the model; writing down major assump-
tions and uncertainties inherent in the model;
disclosing sources of information and analyses
used to develop variables and their relationships
in the model; and annotating any computer
code. The more a model is verified, the more
open it is to understanding—and critique.

Verification is an important aspect of model-
ing where meeting legal mandates is a concern,
as in developing models for use in National En-
vironmental Policy Act (NEPA) documents,
such as environmental impact statements. In this
case, keeping careful records in process docu-
ments is paramount.

TESTING THE AUDIENCE

The best model in the world may fail to be used
if it is too complex or too esoteric. It will also be
ignored if existing administrative organizations
or policies do not provide for its use, or if it is,
for some reason, not credible. In an operational
sense, a model is valid, in part, if it is accepted
(has face validity) and is usable in the intended
work setting. Thus developing models with
teams combining managers and researchers
helps enhance the utility of such tools (Bunnell
1989). A team approach would help ensure that
the model addresses the correct question, is
based on data available from existing databases,
is credible, and can be used in the everyday
course of work.
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RUNNING THE MODEL

In a typical management situation, a wildlife-
habitat model is used to predict response of
wildlife species to potential environmental con-
ditions created from alternative management ac-
tivities. For such a model to be used, it must run
from information available from existing or eas-
ily obtainable inventories of vegetation and
environments. This requirement may limit accu-
racy of model predictions, however, if invento-
ries are dated or incomplete, or fail to include
pertinent variables. In such a case, the models
may be more useful for suggesting changes to in-
ventory procedures.

At best, proxy variables might be used to rep-
resent the missing variables (Marcot et al. 2001),
such as using size of a forest opening to represent
a more complex representation of habitat patch
juxtaposition, or using road density available as
a GIS data layer to represent hunter access.
When proxy variables are used, their degree of
correlation with the intended predictor variable
should be evaluated.

ASSESSING PURPOSE AND CONTEXT

The purpose of a model is often incompletely
stated, and clarifying the intended purpose
should guide how the model is used. If a model
is truly intended to predict real-world envi-
ronments and populations, it should be evalu-
ated using a different set of criteria than if its
purpose is to formalize our knowledge and
understanding.

Also, the context of a model should be spec-
ified by the model builder. Context includes
the range of environmental conditions (e.g.,
weather), types of environments, and seasons in
which the model was built and tested. It is the
onus of the model builder to document these
conditions, and of the model user to adhere to
those conditions. When a model is used outside
its intended context, its accuracy and reliability
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are essentially unknown unless they have been
formally evaluated.

TESTING THE OUTPUT

Too often, models created for prediction are
untested against real-world situations. This
problem occurs for a variety of reasons. Models
are often developed without regard to validation
until after they are built, and postconstruction
validation costs too much time and money. Or,
models are built mostly from theory and are dif-
ficult or impossible to test, even if they are used
for prediction. Or, it is unclear or unspecified
what the model output represents, such as with
models that calculate some relative index of
habitat value.

Depending on the purpose, not all models re-
quire rigorous field testing. However, the validity
(and uncertainty) of models used for helping
make decisions about irreversible or expensive
losses of environments and populations should
be known. In this case, the accuracy, bias, preci-
sion, and reliability of the model should be eval-
uated (e.g., see guidelines by Golbeck 1987).

A Type I error in prediction occurs when a
model predicts species presence (or some other
measure) and the species is actually absent. This
error could occur because of inadequate or in-
correct sampling for the species, because the
field study was conducted during the wrong sea-
son, because the species is inherently rare and
does not maximally occupy all suitable environ-
ments, or because the model was wrong and
overstated the value of environmental parame-
ters or failed to account for an environmental
condition that deducts the presence of the spe-
cies. The degree to which a model avoids Type I
errors is given by the confidence coefficient P
(where P = 1 — o, where o is the significance
level).

Contrariwise, a Type II error in prediction
occurs at rate B when the model predicts absence
and the species is actually present. This error
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could occur because the animals detected were
wandering or their presence is not indicative of
actual environmental quality; because of sam-
pling design; or because the model is wrong and
does not include a vital parameter that affects
presence of the species. The degree to which a
model avoids Type II errors is given by the power
of the model, 1 — B (Steidl et al. 1997). Power
provides a means for selecting models for trend
analysis (Gerrodette 1987), detecting environ-
mental impacts (Osenberg et al. 1994), and de-
termining population declines (Strayer 1999).
Tyre et al. (2003) suggested an extension of lo-
gistic modeling using a zero-inflated binomial
model to better estimate Type II error rates.

Typically, the modeler must make a trade-off
between reducing Type I errors and Type II er-
rors (Roback and Askins 2005; Verhoeven et al.
2005). The ramifications of each type of error of
model prediction depend on how the model is to
be used. If the objective is to identify needs for
mitigation, such as with purchasing or trading
habitats with high opportunity costs, or by
restoring or enhancing environmental condi-
tions, then the model must accurately predict
species presence. That is, frequencies of Type I
errors should be minimized because costs of ac-
tions based on model predictions are high. On
the other hand, if the model is to be used for pre-
dicting impacts, especially on rare or vulnerable
species, then errors in predicting species pres-
ence or positive responses may be tolerable, but
false predictions of species absence or negative
responses might be of greater concern than in
the case of mitigation. In this case, the power of a
model and its ability to avoid Type II errors is
critical.

In general, most habitat models can be ex-
pected to account for less than half the variation
in species density or abundance. On-site envi-
ronmental conditions generally account for even
less variation in population density when con-
sidering migratory species, especially migratory

birds. At first it might seem that low correlations
in a habitat model are not very useful, but con-
sidering the large array of other factors that af-
fect populations, even relatively low correlations
may provide useful insights.

This characteristic of low correlation is also a
lesson for the manager who will use the model
for maintaining environmental conditions. The
manager must understand that most models
that predict species presence, population den-
sity, or species richness from environmental
characteristics are likely to capture only a por-
tion, typically half or less, of the variation in
those species’ parameters. This low explanatory
power does not mean that habitat is unimpor-
tant; it is usually critical. It means that one can-
not manage for environmental conditions alone
and expect with high confidence that the popu-
lation will show a direct response. Another way
of interpreting this low explanatory power is
that by managing for (readily measurable) envi-
ronmental conditions, we control only a portion
of the factors that affect the occurrence and
abundance of species.

Given these validation results, the appropri-
ate use of habitat models then appears to be to
help us recognize the degree (correlation) to
which we can provide for species presence and
abundance, and thus which environmental pa-
rameters under consideration are the more criti-
cal. Such models can also be used to assess po-
tential (hypothetical) effects on species from
alternative management scenarios. However, if
such models are used specifically to predict pop-
ulation size, the predictions should be treated as
hypotheses. Such predictions would assume that
all factors not considered by the model—that is,
the 50% or more of unexplained variation in oc-
currence or abundance—are unimportant or are
at optimal values. This assumption is invariably
false.

Overall, validating models is a many-faceted
problem and should be done routinely as models
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are built and used. Validation should address the
appropriateness of objectives and structure of
the model; the utility, reliability, accuracy, and
completeness of the model; and its credibility.

Some Methods of Model Validation

We have given some tips above about model val-
idation. Specific methods used to test the perfor-
mance of models are many, and the modeling
literature about testing and validation is rich and
deep. In brief, methods of model validation can
be categorized as (1) those that empirically test
specific model predictions, (2) those that evalu-
ate the appropriateness of the underlying model
structure, and (3) those that assess the usabil-
ity of the model for its intended audience and
purpose.

Empirical tests of model predictions can
use various statistical methods, such as cross-
validation of a data set (building the model with
a randomly chosen portion of the data set, and
testing it against the other half) using tech-
niques of data bootstrapping (with replacement
of the data after random selection) or jackknif-
ing (without replacement) (see Meyer et al.
1986, Lillegard et al. 2005). Recently, use of the
Akaike’s information criterion (AIC) (Ander-
son et al. 1994) has come into favor. AIC is
used to guide selection of best-fitting statisti-
cal model structures (e.g., Spendelow et al.
1995; Halley and Inchausti 2002; Rushton et al.
2004).

Evaluating the underlying model structure
can be notoriously difficult, particularly if the
model hides its structure well, such as with neu-
ral networks. The state variables and relations,
however, should be articulated through the
model verification and documentation phase.
The veracity of how they are represented in the
model, and how well they in turn represent ac-
cepted ecological theory, can then be evaluated
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through peer review. Lastly, assessing the usabil-
ity of a model for its intended purpose and audi-
ence can be done by use of questionnaires and
interviews.

Another method of model validation is use of
sensitivity testing, particularly for the model-
building stage. By evaluating the degree of sensi-
tivity of model output to its structure and un-
derlying state relations (e.g., Pacala et al. 1996),
one can determine whether the model is per-
forming as expected and desired. Further valida-
tion may be necessary once the model is built
and performing to specifications, however, or
else the model is simply a representation of one’s
understanding and biases. For some modeling
exercises, such as evaluating the performance of
a model, this level of variation may be enough.
But for use in real-world conservation, further
validation may be needed to ensure that the
model is calibrated correctly and is adequately
representing reality. Other validation methods
suggested in the literature include use of diffu-
sion approximation to validate time series data
on population counts to validate population via-
bility models (Holmes and Fagan 2002) and use
of logistic regression to analyze sensitivity of
population viability analysis models (Cross and
Beissinger 2001).

Examples of Validation

The past decade has seen a number of studies
aimed at validating various kinds of WHR mod-
els. This increase in validation studies is most
encouraging, because validation is difficult but
often essential. In each of these tests, different
criteria were used to test various aspects of
model prediction, including the robustness of
the models to being used in various ways, sensi-
tivity of predictions to precision of input vari-
ables, and accuracy of predictions of species’
abundances as compared among different seral
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stages. Following are examples of recent or im-
portant validation studies.

VALIDATION OF WHR MATRIX AND
MULTISPECIES MODELS

Raphael and Marcot (1986) validated for errors
of omission and commission a WHR model of
amphibians, reptiles, birds, and mammals in a
Douglas-fir sere in California. Results suggested
that, because of errors of commission (predict-
ing more species than actually occur), WHR ma-
trix models are probably best used to predict the
occurrence of species in general vegetation types
and environmental conditions across broad re-
gions rather than at the individual-stand scale. A
shortcoming of such models is that they do not
quantify population response. Thus such models
cannot be used to gauge population density or to
quantify population trend.

Edwards et al. (1996) tested predictions from
a gap analysis of terrestrial vertebrate species in
national parks in Utah using long-term species
lists and found error rates of omission of species
to range from 0% to 25%, and those of commis-
sion to range from 4% to 33%; error rates were
highest with amphibians and reptiles, lowest
with birds and mammals, and lower with larger-
sized parks. They concluded that the gap analysis
WHR models were adequate for aiding conser-
vation planning at the ecoregional level. Overall,
errors of commission in WHR matrix models
can be explained, in part, by the fact that fine-
scale environmental data are typically lacking
with which to “trim” predicted lists of species,
which also causes errors when predicting spatial
distributions of species at levels of fine-scale res-
olution and small geographic areas (Mackey and
Lindenmayer 2001).

Stephens et al. (2002) compared a simple spe-
cies matrix model of alpine marmot (Marmota
marmota) in southern Germany with detailed
empirical data from 13 years’ study on behavior

and demography and found that the simplest
matrix model adequately predicted population
size and density under equilibrium conditions,
but not under dynamically changing conditions.
For the latter, it was necessary to have data on
behavior—in particular, Allee effects on popula-
tion dynamics.

Dettmers et al. (2002) tested the predictions
of presence of forest bird species by habitats in
the southern United States as modeled by a com-
bination of published census and natural history
data, field experience, and expert opinion. Using
point-count survey data from three states, they
found that 23% to 52% of the models correctly
predicted ranks of positive associations between
predictions and observation data. The models
performed better in predicting species restricted
to mid-aged to mature deciduous forests or to
high elevations, and poorer for species in mature
deciduous forests because those species were
also observed to use some early-aged deciduous
forest sites.

A study by Fleishman et al. (2001) of 10 data
sets revealed that umbrella species (selected a
priori using a recently developed index) were no
more effective than randomly selected species in
protecting unrelated species. Such use of um-
brella species may be useful, but their work sug-
gests caution in unbridled use of the concept
without testing.

VALIDATION OF POPULATION VIABILITY
ANALYSIS MODELS

Several recent studies have focused on com-
paring and testing models used in population de-
mography and viability analysis. Mills et al.
(1996) evaluated four population viability anal-
ysis programs and found that idiosyncrasies
among the programs of their input format, and
whether and how the models handled density de-
pendence, led to great differences in estimates of
extinction rates and expected population size.
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They concluded that PVAs should include at least
one scenario run without density dependence
and to exercise caution when interpreting PVA
modeling results.

Likewise, Lindenmayer et al. (2000) tested
VORTEX to predict abundance of three species
of arboreal marsupials in southeastern Aus-
tralia and found that model runs based only on
patch area and home range size overpredicted
number of occupied patches and total abun-
dance of animals. These authors also suggested
caution when using such tools to predict dy-
namics and response of populations in frag-
mented environments.

Coulson et al. (2001) cautioned that PVA
models are generally unable to perform well be-
cause of the inability of precisely predicting cat-
astrophic disturbances. However, despite their
conclusion that PVA models have limited utility
as absolute predictors, it is our experience that
PVAs can be useful for comparing relative effects
of alternative habitat management scenarios.

VALIDATION OF SINGLE-SPECIES MODELS

Fielding and Haworth (1995) tested predictions
from a range of models developed using dis-
criminant analysis and logistic regression of nest
location and occupancy of golden eagles (Aquila
chrysaetos), ravens (Corvus corax), and buzzards
(Buteo buteo) in northwest Scotland. They found
that the models’ predictions were correct 6% to
100% of the time. They attributed this widely
variable outcome in prediction success to
methodological and ecological processes and
cautioned that great care must be taken about
making predictions from such studies and that
such systems may be inherently unpredictable.
Cross and Beissinger (2001) compared logis-
tic regression of demographic data with results
of stochastic and deterministic demographic
models of African wild dogs (Lycaon pictus). The
logistic model results suggested that pup sur-
vival explained the most variation in the proba-
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bility of extinction regardless of density depen-
dence, whereas the standard demographic mod-
els suggested that adult survival was more im-
portant. The authors concluded that logistic
regression is a useful tool for exploring sensitiv-
ity of extinction probability from vital rate pa-
rameters, although it is clear that model struc-
ture, analysis methods, and variance of the vital
rate parameters all affected results.

Fecske et al. (2002) reported on a test of a
habitat-relation model for American marten
(Martes americana) in the Black Hills of South
Dakota. They used stepwise logistic regression to
test their model predictions of presence of the
species, and found that their model correctly
predicted presence in 60% of the 46 10.2-km?
quadrats surveyed. Roloff et al. (2001) tested a
spatially explicit habitat effectiveness model of
Rocky Mountain elk, using two-way ANOVA to
compare observed use with predicted habitat
quality. They found that the elk model per-
formed more consistently during fall than other
seasons, and for subherds unaffected by recent
fire. Their results suggested the need to model
elk herds by season and disturbance influences,
as affecting forage dynamics, topographic usage,
and road effects.

Other validation studies include tests of three
habitat suitability models for Kirtland’s warbler
in Michigan (Nelson and Buech 1996).

Conclusions

WHR models are essential partners on our jour-
ney to better understand, manage, and monitor
wildlife species and communities and their envi-
ronments. As natural environments on this
globe become increasingly stressed and scarce
under bourgeoning human populations and
natural resource use, we are coming to rely more
on technologies such as remote sensing imagery,
on expert judgment, and on the various kinds of
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WHR models to help us find acceptable balances
between conservation and exploitation.

No single model is fully general, completely
accurate and precise, and completely devoid of
bias. As with human understanding, models will
always be wrong—perhaps a better term is “not
useful”—in some context. This does not invali-
date models, and we should avoid the urge to cry
“fatal flaw” and engage in a “battle of the mod-
els” when a prediction goes awry or when per-
sonal interests contrast with model results. In-
stead, we should strive to understand in which
contexts a model may be most useful and the de-
gree of that utility, and then view with due cau-
tion any application of the model outside those
circumstances. Only then can managers best un-
derstand when to use a model and what confi-
dence to place in it.

Models based on expert judgment can pro-
vide valuable information, but they should be
peer reviewed and, where possible, empirically
validated or at least calibrated, else they consti-
tute little more than belief systems. We also ad-
vocate use of multiple models because models
tell us as much about the modeler’s biases and
knowledge and the specific structure of the
model as they do about the real world.
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